
Sequence Comparison with LingPy (Johann-Mattis List, 2017-05-10)
This tutorial will run you through the major steps needed in order to infer cognates automatically with LingPy (http://lingpy.org) (List and Forkel
2016 (:ref:List2016e)) from linguistic word list data and to export the data into various formats so that you can either inspect them using tools
like the EDICTOR (http://edictor.digling.org) (List 2017 (:ref:List2017d)), or further analyse them, using software like SplitsTree
(http://splitstree.org) (Huson 1998 (:ref:Huson1998)) or BEAST (http://www.beast2.org) (Bouckaert et al. 2014 (:ref:Bouckaert2014)).

Basically, this tutorial requires no specific knowledge of Python at all, as I will provide the commands in addition to the pure Python examples in
form of a Python script which can be triggered by calling it via the commandline and passing certain keywords:

$ python3 autocogs.py help 

What is required, however, is, that you have installed both LingPy in the version 2.5.1 (https://github.com/lingpy/lingpy/releases/tag/v2.5.1) for
Python3 (as this tutorial will assume that you use Python3) available on GitHub (https://github.com/lingpy/lingpy), and (as a plus) the python-
igraph (http://igraph.org) package (Csárdi and Nepusz 2006 (:ref:Csardi2006)), and that you know how to use a command line. Furthermore, in
order to follow all examples given in this tutorial, it is useful to work with the ipython (http://ipython.org) suite, which is very convenient for testing
code pieces directly against the Python interpreter.

The tutorial is divided into different blocks, during which different aspects of sequence comparison will be illustrated from the concrete
perspective of LingPy. In order to understand fully all what is going on, however, this tutorial won't be sufficient, and I recommend those who are
interested in the algorithmic and conceptual details of LingPy's major algorithms for sequence comparison to have a closer look at the book
Sequence Comparison in Historical Linguistics (https://sequencecomparison.github.io) (List 2014 (:ref:List2014d) in which the most
comprehensive state of the art is reflected. I will occasionally mention more recent papers in order to account for those aspects of sequence
comparison which have been changed since then, but the book on sequence comparison (which is also freely available for download) is still the
best starting point.

The tutorial is divided into the following parts:

1. Hands on the Data: Preparing, Loading, and Testing Word List Data
2. Phonetic Alignment
3. Automatic Cognate Detection
4. Further Use: Inspection, Evaluation, and Export

Hands on the Data

The Testset

For our test, we will use a dataset consisting of 31 Polynesian languages taken from the ABVD
(http://language.psy.auckland.ac.nz/austronesian/) (Greenhill et al. 2008 (:ref:Greenhill2008)). This dataset was intensively revised and cleaned
in collaboration with Mary Walworth, who corrected many problematic entries and provided detailed information on how to convert the data into
standardized phonetic transcriptions.

Linguists are often skeptical when they hear that LingPy requires explicit phonetic transcriptions, and often, they are even reluctant to interpret
their data along the lines of the International Phonetic Alphabet. But in order to give the algorithms a fair chance to interpret the data in the
same way in which they would be interpreted by linguists, a general practice for phonetic transcriptions is indispensable.

The testset, along with our basic script containing also this tutorial, is available in the lingpy (+++) folder of the QMSS-2017
(https://github.com/shh-dlce/qmss-2017) repository. In the following, we will assume that you opened the terminal in this folder, so that in case
you list all files using the ls command, you will see files like:

autocogs.py
polynesian.tsv

Let us start by quickly examining the file polynesian.tsv which we prepared for this occasion. This file is a tab-separated textfile with the first
row indicating the header, and the the very first column being reserved for numeric idnetifiers. If you open this file in a spreadsheet editor (and
make sure to select "tab" as a delimiter, and NO characters to delimit a cell), will see that it is a very straightforward spreadsheet, in which the
first row is a header indicating the names of the columns, and the first cell is reserved for an identifier, which should be numeric (but order does
not matter).

ID DOCULECT CONCEPT GLOTTOCODE CONCEPTICON_ID VALUE FORM TOKENS VARIANTS SOURCE COGID LOAN

188 Emae_1030 Eight emae1237 1705 βaru βaru β a r u 52375 750 False

447 RennellBellona_206 Eight renn1242 1705 baŋgu baŋgu b a ŋ g u POLLEX 750 False

703 Tuvalu_753 Eight tuva1244 1705 valu valu v a l u 29903 750 False

927 Sikaiana_243 Eight sika1261 1705 valu valu v a l u POLLEX 750 False
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ID DOCULECT CONCEPT GLOTTOCODE CONCEPTICON_ID VALUE FORM TOKENS VARIANTS SOURCE COGID LOAN

1135 Penrhyn_235 Eight penr1237 1705 varu varu v a r u POLLEX 750 False

6114 Kapingamarangi_217 Eight kapi1249 1705 waru waru w a r u walu POLLEX 750 False

You may even prepare your data in a spreadsheet to then analyse it in LingPy. You just need to make sure to export it properly to the TSV
format (which you can easily do by just copy-pasting it into an empty text-file). What you need to know about the format, however, is the
following:

1. contrary to most linguists intuition, the columns do NOT indicate languages, but they indicate one word each, as a result, language
names for each word need to be redundantly repeated

2. certain columns are required by LingPy, and their number can vary, depending on the task you want to carry out, for the purpose of
cognate detection, you need at least the columns doculect, concept, and either a plain transcription (default name is ipa) or a
more advanced and less ambiguous transcription in segmented form (default name is tokens).

3. column headers are upper-case when LingPy writes them to file, to increase readability, but this is not required and internally all
columns are represented as lowercase or uppercase when loaded into LingPy's objects

4. depending on the names of the columns, values will be interpreted by default: if you have a column called cogid, this will be converted
to an integer, and tokens usually assumes that you have a string separated by spaces. As a result, LingPy may throw an error if your
columns do not follow these required formats. To check how columns are interpreted, you can check the file wordlist.rc
(https://github.com/lingpy/lingpy/blob/master/lingpy/data/conf/wordlist.rc) where you will find a full account on currently supported
values.

Not all of the columns in the table above are fully "standardized". The DOCULECT, for example, so far only requires that distinct languages are
given distinct names, not matter what those names contain (as long as it is not a tabstop). But for the purpose of exporting the data to other
formats afterwards, it is useful to use only alphanumeric names here, and to exclude all brackets or spaces from the language names, as we
have been doing in this test set. This becomes especially important when inferring trees or using trees in further LingPy analyses: as trees are
represented in the Newick (https://en.wikipedia.org/wiki/Newick_format) format, where brackets play an important role, brackets in the names for
the doculects will confuse the algorithm and raise an error.

As a last point, note that we list GLOTTOCODE and CONCEPTICON_ID, which follows two major requirements for word list data we try to
establish for the Cross-Linguistic Data Formats (CLDF) (http://cldf.clld.org) initiative. As the linguistic sign has three major dimensions, the
language, the meaning, and the word form, GLOTTOCODE, the language identifier provided by the Glottolog project (http://glottolog.org)
(Hammarström, Forkel and Haspelmath 2017 (:ref:Hammarstroem2017)) and CONCEPTICON_ID, the meaning identifier provided by the
Concepticon project (http://concepticon.clld.org) (List, Cysouw, and Forkel 2016 (:ref:List2016a) cover two of these aspects, while the third
aspect, the consistency of the form, is currently covered by LingPy (more on this below).

Segmentation of Phonetic Entries

In addition to the "normal" requirement of the data to be written in IPA, LingPy offers to provide the explicit segmentation of the data into sound
segments. Segmentation is represented as a space-separated string in the input data, as you can see when looking at the table above, right in
the cells of the TOKENS column. While segmentation looks unspectacular in this cases, where each sound is represented by only one symbol, it
may become problematic when dealing with affricates, pre-aspirated sounds, and complex vowels. The problem is usually that IPA
transcriptions are ambiguous inherently, and this ambiguity is then passed on to the algorithms which cannot handle it. For example, a word like
German [apfəl] "apple" could be either segmented as [ a p f ə l ], or, and historically more consistently, as [ a pf ə l ]. But if the latter reading
is intended (and this is usually language-family-specific), the only way to handle this consistently in IPA would be to put the bar over it: [ap͡fəl].
This practice, however, would still render the detection of pre-aspiration and other cases impossible. Although LingPy deals rather well with
explicit IPA, we recommend all users to segment the data themselves and indicate this by placing one column in their input word list, in which
the phonetic entries are explicitly segmented by a space (with the underscore being used to mark original spaces, i.e., word breaks).

LingPy's sequence-package offers many functions to handle phonetic sequences and to segment them automatically. As an example, consider
the following code-pieces and try to find out what they are actually doing (or trigger $ python3 autocog.py segments in the command
line):
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In [1]: from lingpy import * 
 
seq1, seq2, seq3, seq4, seq5 = "th o x t a", "thoxta", "apfəl", "tʰoxtɐ", "dɔːtər" 
 
print(seq1, "\t->\t", '\t'.join(ipa2tokens(seq1))) 
print(seq2, "  \t->\t", '\t'.join(ipa2tokens(seq2))) 
print(seq2, "  \t->\t", '\t'.join(ipa2tokens(seq2, semi_diacritics="h"))) 
print(seq3, "  \t->\t", '\t'.join(ipa2tokens(seq3))) 
print(seq3, "  \t->\t", '\t'.join(ipa2tokens(seq3, semi_diacritics="f"))) 
print(seq4, "  \t->\t", '\t'.join(ipa2tokens(seq4))) 
print(seq5, "  \t->\t", '\t'.join(ipa2tokens(seq5))) 

You can see from these examples, that LingPy's ipa2tokens function automatically identifies diacritics and the like, but that you can also
tweak it to some extent. If the sequence contains white space, as in the first example, ipa2tokens will split by white space and assume that
the data is already segmented. We won't go into the details of this and other functions here, but you should consider giving the documentation a
proper read before you start spending time on segmenting your data manually. At the same time, when trusting LingPy's default algorithm for
segmentation, you should always make sure after using it that the segmentations make sense. If they are largely wrong or problematic, you
should refine them before running any automatic cognate detection method.

An alternative is to use the segments package by Steven Moran, whose main idea is more comprehensively described in Moran and Cysouw
(2017) (:ref:Moran2017). We have in fact been using it for our working example in order to segment the ABVD data on Polynesian languages
properly, but it would require more time to introduce you to all the details at this point. Just keep in mind that segmentation is crucial for
automatic cognate detection, and that it is your responsibility to make sure that the algorithms "understand" the data you give them to analyse.

Above, I wrote that LingPy takes care of the word form as one of the units of the linguistic sign in the classical "Saussurean" model. But how can
we know whether LingPy recognizes a symbol or not? For this, we need to understand what LingPy does internally with word forms. Here,
LingPy follows Dolgopolsky's (1964) (:ref:Dolgopolsky1964) idea of "sound classes", namely the idea that we can break down the complexity
inherent in phonetic transcription to some major classes of sounds so that those sounds represent some kind of a coherent unit. Dolgopolsky
was thinking of sounds which often occur in correspondence relation to each other, assuming that there is a certain sound-correspondence
probability inherent in all sounds (see also Brown, Holman, and Wichmann 2013 (:ref:Brown2013)). In my experience so far, this is definitely one
important aspect, but even more important is the role of reducing variation which is unnecessary for historical comparison while at the same
time maintaining a sufficient degree of distinctivity. For this reason, I expanded Dolgopolsky's original system of only 10 sound classes to as
many as 25 sound classes, and LingPy further offers the alphabet which was used for the ASJP project (http://asjp.org) (Wichmann, Holman,
and Brown 2014 (Wichmann2014)), which consists of 40 symbols in a slightly modified version. The following image illustrates the differences
between these sound class alphabets and also shows how they represent the Greek word for "daughter".

How can we represent sound classes in LingPy? There is one main function that converts a segmented sound sequence into sound classes.
This function tokens2class takes as input a list or a tuple of segments, that is, the output which you would also get when calling 
ipa2tokens, and a valid sound class model. You can theoretically create models yourself, and pass them as an instance of a specific Model
class in LingPy, but for the moment, we will only use the ones which are there and denote them with strings, i.e., dolgo for Dolgopolsky's
model, sca for my expanded model of Dolgopolsky, and asjp for the ASJP model). Let's just take these three and another specific model,
called art (for "articulation") which gives numbers to indicate the prosody of sounds, and convert the word Greek [θiɣatɛra] into the different
sound class systems (you can also trigger this by typing $ python3 autocogs.py classes in the commandline).

th o x t a  ->  th o x t a 
thoxta    ->  t h o x t a 
thoxta    ->  th o x t a 
apfəl    ->  a p f ə l 
apfəl    ->  a pf ə l 
tʰoxtɐ    ->  tʰ o x t ɐ 
dɔːtər    ->  d ɔː t ə r 
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In [2]: word = "θiɣatɛra" 
segs = ipa2tokens(word) 
 
# iterate over sound class models and write them in converted version  
for m in ['dolgo', 'sca', 'asjp', 'art']: 
    print(word, ' -> ', ''.join(tokens2class(segs, m)), '({0})'.format(m)) 

Note as a last point that the conversion to sound classes is the major check whether LingPy has "understood" your input. If LingPy does not find
a class symbol corresponding to a given segment, it will use the default character "0" to indicate this failure of converting a given sound
sequence. This zero will be treated as an uninvited guest in most comparisons. It won't be aligned with other elements and will score negatively
in the automatic cognate detection routines. You should thus try to avoid this by making sure that your sequences do not contain any errors.
When carrying out cognate the detection analysis, we have a specific keyword check which you can set to True to make sure that all
sequences with zeros in sound classes are excluded before the analysis is carried out. But you can easily write a Python function to check
yourself in only a few lines (write $ python3 autocogs.py errors in commandline):

In [3]: from collections import defaultdict 
 
def check_sequence(seq): 
    """Takes a segmented string as input and returns erroneously converted segments.""" 
    cls = tokens2class(seq, 'dolgo') # doesn't matter which model to take, all cover the sam
e character range 
    errors = defaultdict(int) 
    for t, c in zip(seq, cls): 
        if c == '0': 
            errors[t] += 1 
    return errors 
 
word = "θiɣatEra" 
seq = ipa2tokens(word) 
for error, count in check_sequence(seq).items(): 
    print("The symbol <{0}> occurs {1} times and is not recognized.".format(error, count)) 

Loading the Data into a Wordlist Object

Loading the data into LingPy is straightforward. LingPy has a couple of classes which are specifically designed to handle word list data, and
these classes provide all similar basic functions, plus additional ones for specific purposes:

Wordlist: Basic class with core functionality, allows to read, modify, and write word list data, also allows to calculate distance
matrices from cognate sets as well as rudimentary tree reconstruction functions (UPGMA, Sokal and Michener 1958 (:ref:Sokal1958),
Neighbor-joining, Saitou and Nei 1987 (:ref:Saitou1987)).
Alignments: Class allows to align all cognate sets in a word list. Requires one column which stores the cognate sets as well as a
column for doculect, concept, and transcription (default: ipa) or user-defined segmented transcription (default: tokens).
Alignments can be carried out in different ways, the algorithms follow the ones first described in List (2012a) (:ref:List2012b).
LexStat: Core class for automatic cognate detection, following the algorithm first described in List (2012b) (:ref:List2012a) and later
expanded in List (2014) (:ref:List2014d), and List, Greenhill, and Gray (2017) (List2017c).
Partial: Recent algorithm proposed in List, Lopez, and Bapteste (2016) (:ref:List2016g), allows -- provided data is morpheme-
segmented -- to search for partial cognates in the data.

We will start with the basic Wordlist object to illustrate some core facilities below (commandline: $ python3 autocogs.py wordlist1).

In [4]: from lingpy import * 
 
# load the wordlist 
wl = Wordlist('polynesian.tsv') 
 
# count number of languages, number of rows, number of concepts 
print("Wordlist has {0} languages and {1} concepts across {2} rows.".format(wl.width, wl.hei
ght, len(wl))) 

θiɣatɛra  ->  TVKVTVRV (dolgo) 
θiɣatɛra  ->  DIGATERA (sca) 
θiɣatɛra  ->  8ixatEra (asjp) 
θiɣatɛra  ->  37371757 (art) 

The symbol <E> occurs 1 times and is not recognized. 

Wordlist has 31 languages and 210 concepts across 7551 rows. 
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So by accessing the attributes width we retrieve the number of languages and with height, we retrieve the number of concepts. This follows
the logic inherent in the classical format in which linguists prepare their spreadsheets, namely by placing concepts in the first column and
languages in the rest of the columns. Classical linguists would thus represent the data from the table above as follows:

CONCEPT Emae_1030 RennellBellona_206 Tuvalu_753 Sikaiana_243 Penrhyn_235 Kapingamarangi_217

eight βaru baŋu valu valu varu waru

... ... ... ... ... ... ...

The disadvantage of this annotation is, however, that we can only store one value in each cell, and we will create inconsistencies if we try to mix
information per cell. For that reason, we maintain the strict tabular representation where each word is placed in one row, but internally, LingPy
represents the data in multi-dimensional tables in which languages are thought to be placed in the columns and concepts in the rows.

There are multiple ways in LingPy to inspect and manipulate data using the Wordlist class, but it would go to far to mention them all here, so
we will restrict it to one example, by which we retrieve the values from the six languages above for the entry "Eight", using the 
wordlist.get_dict() function, and refer the users to a longer tutorial which is online (http://lingpy.org/tutorial/lingpy.basic.wordlist.html).

In [5]: # get all indices for concept "hand", `row` refers to the concepts here, while `col` refers
 to languages 
eight = wl.get_dict(row='Eight', entry='value') 
for taxon in ['Emae_1030', 'RennellBellona_206', 'Tuvalu_753', 'Sikaiana_243', 
'Penrhyn_235',  'Kapingamarangi_217']: 
    print('{0:20}'.format(taxon), '  \t', ', '.join(eight[taxon])) 

Checking Coverage

For cognate detection, it is not only important to have good phonetic transcriptions (ideally segmented in such a form that they were checked by
an experienced linguist), but also to make sure that there are enough words in your data. If the data is too sparse, even human linguists would
not be able to find any signal based on regular sound correspondences, provided they see the languages the first time and don't know their
history (which is the situation for every algorithm). Following an earlier study by List (2014b) (:ref:List2014c), we know now that at least 100
word pairs for languages as disparate as English and French are needed to provide a solid basis for automatic cognate detection. But when
dealing with a large dataset of different languages, which necessarily contains a number of gaps (not all concepts can be elicited in the sources,
field work has not provided enough details, etc.), it can be deleterious if the mutual coverage between the languages is low.

By mutual coverage, I mean the number of comparable word pairs (with the same concept) for each language pair in a given dataset. We can
compare different aspects of mutual coverage, such as the average mutual coverage, where we average the number of available word pairs, or
the minimal mutual coverage which provides the smallest mutual coverage of any pair of languages. In addition, one can also ask for the subset
fulfilling a minimal mutual coverage for all language pairs, and this task would return the subset of languages in a Wordlist which all have at
least the mutual coverage specified by the user. LingPy offers now (in version 2.5.1) solutions for all these problems, but since the last problem
is considerably hard and computationally intensive, we won't discuss it here, but will instead simply check the minimal mutual coverage which
holds for all languages in our sample. So we try to find the lower bound of concept pairs which all languages have in common (type $ python3 
autocogs.py coverage1 in commandline).

In [6]: from lingpy.compare.sanity import mutual_coverage_check, mutual_coverage_subset 
for i in range(210, 0, -1): 
    if mutual_coverage_check(wl, i): 
        print("Minimal mutual coverage is at {0} concept pairs.".format(i)) 
        break 
         

Emae_1030                βaru 
RennellBellona_206       baŋgu 
Tuvalu_753               valu 
Sikaiana_243             valu 
Penrhyn_235              varu 
Kapingamarangi_217       walu 

Minimal mutual coverage is at 162 concept pairs. 
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This value is definitely good enough for our purpose, given the rule of thumb which says that below a minimal mutual coverage of 100 one
should not do language-specific cognate detection analyses. If the coverage is lower, this does not mean you need to give up automatic cognate
detection, but it means you should not use the language-specific LexStat method but rather a language-independent method, which does not
require the information on potential sound correspondences (but will also tend to identify more false positives).

Although, as I just said, the value is good enough, we should further reduce the data a bit to make sure we can inspect them better later on
(otherwise, the analyses may also take a lot of time if you run them on computers with insufficient power). So what we will do right now is testing
the mutual_coverage_subset method which returns a subset of languages for which a given minimal mutual coverage holds. We will then
export our Wordlist object to file by specifying these languages as our subset (type $ python3 autocogs.py coverage2 in
commandline):

In [7]: count, results = mutual_coverage_subset(wl, 200) 
coverage, languages = results[0] 
print('Found {0} languages with an average mutual coverage of {1}.'.format(count, coverage)) 
 
# write word list to file 
wl.output("tsv", filename="mikronesian", subset=True, rows=dict(doculect = "in "+str(languag
es)),  
          ignore='all', prettify=False) 
 
# load the smaller word list 
wl = Wordlist('mikronesian.tsv') 
 
# print basic characteristics 
print("The new word list has {0} languages and {1} concepts across {2} words.".format( 
    wl.width, wl.height, len(wl))) 

Phonetic Alignment
Phonetic alignment is per se independent of the existence of any word list data. Instead it is a way to align phonetic sequences (words in
phonetic transcription) in various ways. Phonetic alignment is an important pre-requisite in order to identify regular sound correspondences.
Regular sound correspondences again are important to identify cognates (at least in the classical framework of the comparative method). In
addition, alignment analyses are useful to present one's analyses in a transparent way, since, unfortunately, scholar often think that their
cognate judgments are self-evident, ignoring that a linguist with another language family as specialty will barely be able to follow the
idiosyncratic discourse on language-family-specific sound change patterns and the like.

In order to carry out alignment analyses in LingPy, you have a range of different possibilities, and there won't be the time to cover all of them
here. Instead, I will illustrate how you can make a quick multiple alignment using the Multiple class of LingPy. This class is automatically
imported when importing LingPy, and it requires a list of sequences as input. Here again, LingPy will automatically try to split your input
sequences if they are not already segmentized, but we advise you to segmentize them properly before. Let's just use the six words for "Eight"
which we tested before, to align the words accordingly. We type them in by pre-segmenting them, following the space-segmented annotation
principle, which is used in all sequence representations of LingPy. We start with the simplest method, the progressive alignment, which first
makes a little tree of the input sequences and then aligns them by going the tree from the leaves to the root, every time aligning two more, until
all are aligned ($ python3 autocogs.py alignments1 in commandline):

In [8]: msa = Multiple(['β a r u', 'v a ŋ g u', 'v a l u', 'v a l u', 'v a r u', 'w a l u']) 
msa.prog_align() 
print(msa) 

There are more complicated algorithms available, for example, library-based alignment, following the T-Coffee algorithm (Notredame et al. 2000
(:ref:Notredame2000), based on a so-called "library" which is created before the tree is built. This algorithm, you can use like this ($ python3 
autocogs.py alignments2 in commandline):

Found 14 languages with an average mutual coverage of 207. 
The new word list has 14 languages and 210 concepts across 3671 words. 

β a - r u 
v a ŋ g u 
v a - l u 
v a - l u 
v a - r u 
w a - l u 
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In [9]: msa.lib_align() 
print(msa) 

The results are still the same, but it was shown in List (2014) (:ref:List2014d) that this algorithm largely enhances more complex alignments.

Last not least, let us quickly check a feature that checks for metathesis in multiple alignments. While metathesis in pairwise alignments has long
since been handled, but not in multiple alignments. For this, we need a different set of words, and we take some Slavic words for "apple", where
we know that metathesis occured ($ python3 autocogs.py alignments3 in commandline):

In [10]: words = ['j a b l o k o', 'j a b ə l k o', 'j a b l k o', 'j a p k o'] 
msa = Multiple(words) 
msa.prog_align() 
print(msa) 
print('There is {0} swap in the alignment.'.format('no' if not 
msa.swap_check(swap_penalty=-1) else 'a')) 

Unfortunately, we do not have enought time to go into all the details of alignment analyses, and especially more complex aspects of different
alignment modes (global, local, semi-global, etc.), different basic algorithms (extended algorithm for secondary alignments), but also how sound
classes, the internal representation format in LingPy are integrated into the algorithms, cannot be treated here in full. I can only refer the
interested users to both the extensive online documentation at lingpy.org (http://lingpy.org), as well as my aforementioned book on sequence
comparison (http://sequencecomparison.github.io).

Cognate Detection

Checking the Data

I assume that you have thoroughly checked your data manually before running cognate detection analyses. I also assume that you do not have
any of the following problems in your data:

extensive number of synonyms in one language
multiple variant forms for the same word form
data merged from different sources without adjusting the phonetic transcription
mutual coverage below 100 words per language pair

Before running the cognate detection analysis, you may, however, still want to check whether LingPy recognizes all your data correctly. Here, a
very simple way to achieve this, is to load the LexStat class with the specific keyword check set to True:

In [11]: lex = LexStat('mikronesian.tsv', check=True, segments='tokens') 

If you have problems in your code, you will be asked if you want to exclude the sequences automatically. As a result, a logfile, called 
errors.log will be created and point you to all erroneous sequences which contain segments which LingPy does not recognize. Let us quickly
introduce some bad sequences by just converting randomly all [e] sounds to the latter A (capitals are never accepted in the normal sound
class models of LingPy) and see what we get then. For this, we even do not need to re-write the data, we just add another row where we
change the content, give it a random name (we call it "tokens", as this also signals LingPy that the input should be treated as a sequence and
not as a string), and specify this for the LexStat instance method as the column in the file where the segments are. We first load the data as 
Wordlist and then pass that data directly to LexStat ($ python3 autocogs.py trigger-errors in commandline):

β a - r u 
v a ŋ g u 
v a - l u 
v a - l u 
v a - r u 
w a - l u 

j a b - l o k o 
j a b ə l - k o 
j a b - l - k o 
j a p - - - k o 
There is a swap in the alignment. 

http://localhost:8888/nbconvert/html/:ref:List2014d
http://lingpy.org/
http://sequencecomparison.github.io/


In [13]: wl = Wordlist('mikronesian.tsv') 
 
# add new column "segments" and replace data from column "tokens" 
wl.add_entries('segments', 'tokens', lambda x: ['A' if y == 'e' else y for y in x]) 
 
lex = LexStat(wl, segments='segments', check=True) 

If you now check the file errors.log, you will find a long file with the following first ten lines:

ID  Tokens  Error-Type 
1572    <bad character in tokens at «A»>    g a t o a A l i m a 
3320    <bad character in tokens at «A»>    p a A _ ʔ a ʔ u r u 
5145    <bad character in tokens at «A»>    l i m a s A f u l u 
5696    <bad character in tokens at «A»>    r i m a _ t A k a u 
12  <bad character in tokens at «A»>    p a A 
3327    <bad character in tokens at «A»>    p a A 
5153    <bad character in tokens at «A»>    A _ f aː 

Each row starts with the ID of the word which is contaminated (and this links to the row-ID of your input file), it is followed by a description of the
error-type, and then by a segmented form of the word form. LingPy then also creates a file called lingpy-DATE-cleaned.tsv (DATE
meaning the date of the day you run LingPy), in which all contaminated words have been excluded, and this file is read in again, if you pressed
"y", and will be the one to run the analysis.

LingPy thus tries to make the enterprise of cognate detection quite convenient for you as a user, but you should be warned not to use files
containing errors for publications, but only for personal test purposes, in order to improve your data. If LingPy does not recognize characters,
you should not globally exclude them as a reaction, but instead you should try to improve your data until it is publication-ready. Otherwise, the
results will much likely be disappointing anyway.

Overview on Algorithms

LingPy comes along with four pre-defined cognate detection algorithms. These algorithms are all contained in the LexStat class which often
confuses users, as one of the algorithms provided by LexStat is also called lexstat. Internally, however, it makes sense, as all algorithms
were created at the same time, when I published the LexStat algorithm (List 2012b (:ref:List2012a)), so I would write it into one class which I
called "LexStat" and for the paper, I then also decided to call the algorithm "LexStat" since I could not think of a better name.

Anyway, when carrying out cognate detection algorithms, it is important to keep in mind what these algorithms are based on. We can distinguish
the following three major types:

1. consonant-class-matching (CCM), following Dolgopolky's (1964) early idea to assume that words with two matching consonant classes
would likely be cognate,

2. phenotypic sequence similarity partitioning (PSSP), follows the general idea also applied in homology detection in biology, by which
sequences are clustered into sets of homologs based on a partitioning algorithm which is applied to a distance or a similarity matrix
representing the overall sequence similarity,

3. language-specific sequence similarity partitioning (LSSP), follows the core idea of the LexStat algorithm by which sequence similarity is
calculated on a language-specific basis for each language pair in the data, based on permutation statistics which give hints regarding
the most likely candidates for regular sound correspondences.

There were errors in the input data - exclude them? [y/N] y 

http://localhost:8888/nbconvert/html/:ref:List2012a


In LingPy, the methods which you can use to carry out these analyses have specific names, as well as the default output, a cluster decision
represented as an integer identifier that assigns words to clusters. They are given in the table below:

Class Alignments?
Sound
Classes?

Sound
Correspondences?

Threshold?
LingPy-
Name

LingPy-
Output

Note

CCM no yes no no "turchin" "turchinid"
Consonant-class matching method close to the
description in Turchin et al. (2010)
(:ref:Turchin2010))

PSSP yes no no yes
"edit-
dist"

"editid"
Vanilla edit-distance (Levenshtein 1965
(:ref:Levenshtein1965)), normalized by dividing
with the longer string.

PSSP yes yes no yes "sca" "scaid"
Distance score derived from SCA alignments (List
2012a (:ref:List2012b)) by applying Downey et
al.'s (2008) (:ref:Downey2008) formula

LSSP yes yes yes yes "lexstat" "lexstatid"
The core "LexStat" algorithm described in List
(2012b (:ref:List2012a) and 2014 (:ref:List2014d))

As a general rule, you should keep the following in mind (see also our experience with these methods in List, Greenhill, and Gray (2017)
(:ref:List2017c):

1. if you want a fast first analysis and speed counts, take "turchin" (Dolgopolsky method), since it has a low amount of false positives, but
it will also miss many cognates

2. if speed does not matter and you have enough concepts (> 100) in your data, and you want to have the most reliable analysis, take
"lexstat"

3. if you have less than 100 concepts, and speed does not really matter, take "sca", as it yields consistently better results as the "turchin"
method

Running the Analysis

Let us now, before we sink too much into the details, just start and do all four analyses on our mikronesian.tsv test data. Note that due to
the permutation approach used by the "lexstat" method, we will need to write two commands here, while we need only one command for the
other three methods. We start by loading the data into the LexStat class and will then run the "turchin" analyses for the start, and we then print
out the results for the item "Eight" ($ python3 autocogs.py cognates-turchin in commandline):

In [14]: lex = LexStat('mikronesian.tsv', segments='tokens', check=True) 
 
# run the dolgopolsky (turchin) analysis, which is threshold-free 
lex.cluster(method='turchin') 
 
# show the cognate sets, stored in "turchinid" for the words for "Eight" 
eight = lex.get_dict(row='Eight') # get a dictionary with language as key for concept "eigh
t" 
for k, v in eight.items(): 
    idx = v[0] # index of the word, it gives us access to all data 
    print("{0:20} \t {1} \t{2}".format(lex[idx, 'doculect'], lex[idx, 'value'], lex[idx, 'tu
rchinid'])) 

                                                                       

NorthMarquesan_38      va'u  1 
Hawaiian_52            walu  2 
Rarotongan_58          varu  2 
Maori_85               waru  2 
Samoan_118             valu  2 
Austral_128            vaʔu  1 
TongaTongaIslands_136   valu  2 
Pukapuka_152           valu  2 
Tahitian_173           va'u  1 
RennellBellona_206     baŋgu  10 
EastFutuna_210         valu  2 
Rapanui_264            va'u  1 
VaeakauTaumako_375     valu  2 
Nukuria_1212           varu  2 

http://localhost:8888/nbconvert/html/:ref:Turchin2010
http://localhost:8888/nbconvert/html/:ref:Levenshtein1965
http://localhost:8888/nbconvert/html/:ref:List2012b
http://localhost:8888/nbconvert/html/:ref:Downey2008
http://localhost:8888/nbconvert/html/:ref:List2012a
http://localhost:8888/nbconvert/html/:ref:List2014d
http://localhost:8888/nbconvert/html/:ref:List2017c


We now do the same for the "sca" method, but since this methods are not threshold free, we will need to define a threshold. We follow the
default value we know from experience, which is 0.45. We then print out the same data, but this time including the cognate jugdments by all
three methods ($ python3 autocogs.py cognates-sca in commandline):

In [15]: lex.cluster(method="sca", threshold=0.45) 
 
for k, v in eight.items(): 
    idx = v[0]  
    print("{0:20} \t {1} \t{2} \t {3} ".format( 
        lex[idx, 'doculect'],  
        lex[idx, 'value'],  
        lex[idx, 'turchinid'],  
        lex[idx, 'scaid'])) 

We are now ready to do the same analysis with the "lexstat" method. This will take some time due to the permutation test. In order to make sure
we do not need to run this all the time, we will save the data immediately after running the permutation to a file which we give the extension
"bin.tsv", and which we can load in case we want to carry out further tests, or which we can otherwise also share when publishing results, as it
contains all the data needed to re-run the analyses on a different machine. LingPy writes a lot of data into the wordlist objects as a default. If you
want to have the plain text file, add the keywords prettify=False and ignore='all' to the output-statement. But in this case, if we want to
store the results of the permutation test, we need to store the whole file, including the language-specific scorer ($ python3 autocogs.py 
cognates-lexstat in commandline):

In [16]: lex.get_scorer(runs=10000) 
lex.output('tsv', filename='mikronesian.bin') 
lex.cluster(method='lexstat', threshold=0.60) 
 
for k, v in eight.items(): 
    idx = v[0]  
    print("{0:20} \t {1} \t{2} \t {3} \t {4}".format( 
        lex[idx, 'doculect'],  
        lex[idx, 'value'],  
        lex[idx, 'turchinid'],  
        lex[idx, 'scaid'], 
        lex[idx, 'lexstatid'] 
    )) 

                                                                      

NorthMarquesan_38      va'u  1   1  
Hawaiian_52            walu  2   1  
Rarotongan_58          varu  2   1  
Maori_85               waru  2   1  
Samoan_118             valu  2   1  
Austral_128            vaʔu  1   1  
TongaTongaIslands_136   valu  2   1  
Pukapuka_152           valu  2   1  
Tahitian_173           va'u  1   1  
RennellBellona_206     baŋgu  10   10  
EastFutuna_210         valu  2   1  
Rapanui_264            va'u  1   1  
VaeakauTaumako_375     valu  2   1  
Nukuria_1212           varu  2   1  

2017-05-09 21:24:34,691 [WARNING] A different scoring function has already been calculated,
 overwriting previous settings. 
                                                                                    

NorthMarquesan_38      va'u  1   1   1 
Hawaiian_52            walu  2   1   1 
Rarotongan_58          varu  2   1   1 
Maori_85               waru  2   1   1 
Samoan_118             valu  2   1   1 
Austral_128            vaʔu  1   1   1 
TongaTongaIslands_136   valu  2   1   1 
Pukapuka_152           valu  2   1   1 
Tahitian_173           va'u  1   1   1 
RennellBellona_206     baŋgu  10   10   10 
EastFutuna_210         valu  2   1   1 
Rapanui_264            va'u  1   1   1 
VaeakauTaumako_375     valu  2   1   1 
Nukuria_1212           varu  2   1   1 



You can see that there is not much difference in the results for this very item, but you should not underestimate the different power of the
methods, as we will see later on when running an evaluatin analysis. For now, trust me that in general the results are quite different.

Let us now run (for those who managed to install the python-igraph package) an additional analysis which was shown to yield even better
results. Here, we do still use the "lexstat" approach, but we use "infomap" (Rosvall and Bergstroem 2008 (:ref:Rosvall2008)) as our cluster
method. This method is network-based rather than agglomerative (as is LingPy's default), and was shown to yield consistently better results in
combination with "lexstat" (List, Greenhill, and Gray 2017 (:ref:List2017c)). In order to avoid that we override the content of the column
"lexstatid", we now pass a specific keyword, called ref (the "reference" of the output) and set its value to "infomap". We also choose a different
threshold, the one we empirically determined from tests on different language families (see ibd. for details, ($ python3 autocogs.py 
cognates-infomap in commandline):

In [17]: lex.cluster(method="lexstat", threshold=0.55, ref="infomap", cluster_method='infomap') 
for k, v in eight.items(): 
    idx = v[0]  
    print("{0:20} \t {1} \t{2} \t {3} \t {4} \t {5}".format( 
        lex[idx, 'doculect'],  
        lex[idx, 'value'],  
        lex[idx, 'turchinid'],  
        lex[idx, 'scaid'], 
        lex[idx, 'lexstatid'], 
        lex[idx, 'infomap'] 
    )) 

Well, no improvement for "eight", but we will see later in detail, and for now, we just write the data to file, this time in plain text, without the
additional information, but with the additional columns with our analyses.

In [18]: lex.output('tsv', filename='mikronesian-lexstat', ignore='all', prettify=False) 

Aligning the Results

One great advantage of LingPy is that alignments can also be directly computed from automatically inferred cognate sets. This is useful, first
also for manually annotated cognate sets, as it saves a lot of work, since alignment algorithms come very close to human judgments, and it
requires only minimal post-annotation by humans to correct the errors. Second, it is useful to check the data, as it makes transparent where the
algorithm found the similarity that triggered a respective cognate decision.

When carrying out alignment analyses, we use the Alignments class in LingPy which requires a word list as input as well as the column which
contains the cognate sets which shall be aligned. We will use the "infomap" analysis for our automatic alignments, since this usually performs
better than the other methods. This is done by specifying the keyword ref as "infomap" when calling the Alignments class. As a further
important tweak, we first load the data into the LexStat class so that we have the inferred sound correspondences which will then be used to
compute our alignments. For this purpose, we load the file mikronesian.bin.tsv which stores the results of our permutation analysis and
provides language-specific scores for all segments in the data (high scores indicating likely sound correspondences, low scores < 0 indicating
non-corresponding sounds). We align using the normal progressive alignment, which is usually sufficient for smaller alignments and is slightly
faster. When calling the alignment algorithm, we define the specific keyword scoredict and pass it the lex.cscorer, which stores the
language-specific scoring functions for our data ($ python autocogs.py alignments4 in commandline):

In [19]: lex = LexStat('mikronesian.bin.tsv') 
alm = Alignments('mikronesian-lexstat.tsv', ref='infomap', segments='tokens') # `ref` indica
tes the column with the cognate sets 
alm.align(method='progressive', scoredict=lex.cscorer) 

                                                                       

NorthMarquesan_38      va'u  1   1   1   1 
Hawaiian_52            walu  2   1   1   1 
Rarotongan_58          varu  2   1   1   1 
Maori_85               waru  2   1   1   1 
Samoan_118             valu  2   1   1   1 
Austral_128            vaʔu  1   1   1   1 
TongaTongaIslands_136   valu  2   1   1   1 
Pukapuka_152           valu  2   1   1   1 
Tahitian_173           va'u  1   1   1   1 
RennellBellona_206     baŋgu  10   10   10   1 
EastFutuna_210         valu  2   1   1   1 
Rapanui_264            va'u  1   1   1   1 
VaeakauTaumako_375     valu  2   1   1   1 
Nukuria_1212           varu  2   1   1   1 

http://localhost:8888/nbconvert/html/:ref:Rosvall2008
http://localhost:8888/nbconvert/html/:ref:List2017c


This was not very spectacular, as we have not yet seen what happened. We can visualize the alignments from the commandline by picking a
particular cognate set and printing the alignments on screen. The alignments are added in a specific column called alignments as a default
(but which can be modified by specifying another value with the keyword alignments passed to the initialization method for the Alignments
class). Additionally, they are in a class attribute, which is called Alignments.msa and which can store multiple different alignment analyses.
This code is a bit hacky, due to the nested dictionary, so we won't go into the details right now but just illustrate how we can print a couple of the
aligned cognate sets (python3 autocogs.py alignments5 in commandline):

In [20]: for cog in ['1']: 
     
    msa = alm.msa['infomap'][cog] 
    for i, idx in enumerate(msa['ID']): 
        print( 
            '{0:20}'.format(msa['taxa'][i]),   
            '\t', 
            alm[idx, 'concept'], 
            '\t', 
            '\t'.join(msa['alignment'][i]) 
        ) 
               
               

Again the eight, although this was not planned. But now let's quickly save the data to file, so that we can go on and inspect the findings further
(commandline covers this command via python3 autocogs.py alignments4):

In [21]: alm.output('tsv', filename='mikronesian-aligned', ignore='all', prettify=False) 

Austral_128            Eight   v a - ʔ u 
EastFutuna_210         Eight   v a - l u 
Hawaiian_52            Eight   w a - l u 
Maori_85               Eight   w a - r u 
NorthMarquesan_38      Eight   v a - ʔ u 
Nukuria_1212           Eight   v a - r u 
Pukapuka_152           Eight   v a - l u 
Rapanui_264            Eight   v a - ʔ u 
Rarotongan_58          Eight   v a - r u 
RennellBellona_206     Eight   b a ŋ g u 
Samoan_118             Eight   v a - l u 
Tahitian_173           Eight   v a - ʔ u 
TongaTongaIslands_136   Eight   v a - l u 
VaeakauTaumako_375     Eight   v a - l u 



Further Use
This is by far not all you can do with LingPy, but it should be almost enough for a first demonstration. Yet in the reminder of this tutorial, I want to
show quickly, what you can do, once the data has been analysed. We will start by showing how to visualize and inspect the data word by word
and alignment by alignment, using the EDICTOR (http://edictor.digling.org) tool, which I have been developing for the last couple of years, and
which has now been released in a first beta version (List 2017 (:ref:List2017d)). Then I will show how we can evaluate the accuracy of our
findings with help of LingPy's evaluation module. Last not least, I will show how you can export distance data, Nexus files, and trees with help of
LingPy's export facilities.

Inspection with the EDICTOR

The EDICTOR is a web-based tool written entirely in JavaScript which helps to load LingPy's tsv-files and inspect them in various ways. In order
to use it, make sure to use FireFox, GoogleChrome, or Safari as your web browser, open the url http://edictor.digling.org
(http://edictor.digling.org), and you will see a welcome screen as follows:

In order to inspect your data, all you have to do is to take your file, and drag it onto the "browse" field. Alternatively, you can also click on the
browse field and then select the file by navigating to its location. Once this has been done, you will need to apply some tweaks with the
EDICTOR which would take to long to be discussed here in text. However, for those who only have the chance to read this tutorial online,
consider having a look at the help instructions of the EDICTOR itself, or by checking out the little demo video (of which the music was cut, due
to copy-right problems, play "Like a Rolling Stone" in Dylan's original version, when watching it to get the right feeling).

http://edictor.digling.org/
http://localhost:8888/nbconvert/html/:ref:List2017d
http://edictor.digling.org/


In [22]: from IPython.display import YouTubeVideo 
YouTubeVideo('IyZuf6SmQM4') 

Evaluation with LingPy

LingPy has a couple of evaluation methods implemented, and since we have original expert cognate judgments from ABVD, we can compare
our findings against theirs. Comparing cognate set accuracy is not necessarily a trivial problem, as we deal with cluster comparisons, which is a
topic that was debated a lot in circles outside of linguistics, and it would lead us too far away if we discussed it in detail here now. For a linguistic
viewpoint with a brief working example of our preferred method, the B-Cubed scores (see Hauer and Kondrak 2011 (:ref:Hauer2011), Bagga
and Baldwin 1998 (:ref:Bagga1998), and Amigo et al. 2009 (:ref:Amigo2009)), see List, Greenhill, and Gray (2017). What you need to know,
however, is that evaluation in NLP circles usually comes along with the concepts of precision, recall, and f-score. Initially, I found them rather
difficult to grasp, as historical linguists usually think in terms of false positives and false negatives. In order to understand the idea, one should
think that an algorithm for cognate detection can basically do two things either right or wrong: it could cluster words which are not cognate, or it
could fail to cluster words as cognate. In the first case, we would measure this in terms of precision, by counting, how often the algorithm
proposes correct or incorrect answers, and in the latter case, we measure the proportion of cognate sets which are missed. In the B-Cubed
measure we use, this translates roughly to a measure of false/true positives vs. false/true negatives, but it is not entirely the same. The f-score
computes the harmonic mean, which summarizes both values, and we usually want to improve the f-score and we use it to compare different
algorithms with each other.

Let's start and do this comparison now, by loading the respective functions from the LingPy evaluation module, and computing precision, recall,
and f-scores for all our different automatically inferred cognate sets with respect to the gold standard. The gold standard is located in the column
COGID of the input file, so we need to name this when comparing with any of the other columns (like LEXSTATID, etc., $ python3 
autocogs.py evaluate in terminal).

In [23]: from lingpy.evaluate.acd import bcubes, diff 
wl = Wordlist('mikronesian-lexstat.tsv') 
 
for res in ['turchinid', 'scaid', 'lexstatid', 'infomap']: 
    print('{0:10}\t{1[0]:.2f}\t{1[1]:.2f}\t{1[2]:.2f}'.format( 
        res, 
        bcubes(wl, 'cogid', res, pprint=False) 
    )) 
     

You can see, that the "infomap" method is in fact working one point better than the normal "lexstat" method, and you can also see how deep the
difference between the correspondence-informed methods and the other methods is. As a last way to inspect the data, we will now use the 
diff function to create a file that contrasts the expert cognate sets with the ones inferred by Infomap ($ python3 autocogs.py diff in
terminal).

In [24]: diff(wl, 'cogid', 'infomap', pprint=False) 

Out[22]:
EDICTOR Demo

turchinid  0.94 0.61 0.74 
scaid      0.87 0.76 0.81 
lexstatid  0.94 0.84 0.89 
infomap    0.93 0.88 0.90 

http://localhost:8888/nbconvert/html/:ref:Hauer2011
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This will create a file called "mikronesian-lexstat.tsv.diff" in your folder. If you open this file, you will see that it contrasts the "cogid" with the
"infomap" numbers by putting them with words and languages in two columns:

Concept: above, False Positives: no, False Negatives: yes 
Austral_128             nuʔa           1       1 
Tahitian_173            niʔa           1       1 
EastFutuna_210          luga           1       2 
Hawaiian_52             i_luna         1       2 
Maori_85                i_ruŋa         1       2 
NorthMarquesan_38       ʔuna           1       2 
Nukuria_1212            i_aruna        1       2 
Pukapuka_152            luŋa           1       2 
Rapanui_264             ruga           1       2 
Rarotongan_58           ruŋa           1       2 
RennellBellona_206      guŋa           1       2 
Samoan_118              i_luŋa         1       2 
TongaTongaIslands_136   ʔi_ʔoluŋa      1       2 
VaeakauTaumako_375      luŋa           1       2 

I assume that the format is more or less self-explaining. Note only one thing: the cognate-ids are always re-computed for each concept set, so
you cannot compare them with the ones you find in the text. This is, however, justified, as it helps to compare, since LingPy's diff method re-
numbers the cognate identifiers for each concept in order to maximally contrast findings by the algorithm and the ones proposed by the experts.

Exporting Distances and Nexus Files

It is clear that for many of those who consult automatic cognate detection, they use the methods in order to be able to do more with the data
afterwards. LingPy so far supports quite a few different ways to write your data to file for further use in other software packages. A complete
integration of Nexus files which transport all information which might be relevant for BEAST, however, does not exist yet (but will be added at
some point sooner than later).

You can nevertheless export to nexus, and what the algorithm exports are your presence-absence patterns extracted from the cognate sets ($ 
python3 autocogs.py nexus):

In [25]: wl = Wordlist('mikronesian-lexstat.tsv') 
wl.output('paps.nex', filename='mikronesian', ref='infomap', missing='?') 

The file mikronesian.paps.nex then looks like this:

#NEXUS 
 
BEGIN DATA; 
DIMENSIONS ntax=14 NCHAR=1153; 
FORMAT DATATYPE=STANDARD GAP=- MISSING=? interleave=yes; 
MATRIX 
 
Austral_128           10000000000000001000000001000000001000111000000000000110001001111001110110000
000000100001010010010000000001000101000000001000010000100011000100010100000001000000100000000011010
000110001000110100000001010001001000001101001000000001001000100000101000000100010010000000010000000
100001000010000000101001000101001000000000000110001010000000000100000100000000001000010011110100100
010100100000001000011000000101000000001000010100000001010000111010010000001010001100100000101000001
010010000000100100100000000000100010000000011010000000000000100010000000010000001000000110001010010
010010000100000011000010001010000100001001000000110011000100000010000000100000010000000101100000000
100001100000000000011001010010011000000010000100010101000010000001001100000000110001101000000000010
000000000001010000001000000001000100000110001100000000010000000001010000000000001000101000011000011
100011000000000000011000011001110000010000010001000000000100001000000010000000000001000000000000011
000000001100000001000011001001100000010000011100010000000000000010000000001001011010000100001101010
00101000010001110000000100000010000100000001010000001000000000000010000010100000001000 

You can also calculate distances which would be interesting for packages like SplitsTree (Huson 1998), or also Phylip (Felsenstein 2005
(:ref:Felsenstein2005). For this, you need to be careful, however, since distances can be computed in different ways, and you can choose from
a multitude of different distances, and they are not (yet) all documented. The distance calculation as a default counts, how many cognates there
are for all concepts between each language pair, so in some way, this tries to mimick Swadesh's original idea of distances or similarities
between languages ($ python3 autocog.py distances in commandline):

http://localhost:8888/nbconvert/html/:ref:Felsenstein2005


In [26]: wl.calculate('dst', ref='infomap', mode='swadesh') 
wl.output('dst', filename='mikronesian') 

If you open the file, you will see that it follows strictly the Phylip distance format which also cuts off all language names longer than 10
characters (but there are ways to modify this, I can't show them now):

14 
Austral_128 0.00 0.55 0.40 0.41 0.45 0.58 0.40 0.46 0.31 0.52 0.50 0.15 0.57 0.58 
EastFutuna_ 0.55 0.00 0.48 0.48 0.42 0.41 0.36 0.45 0.39 0.22 0.28 0.61 0.33 0.41 
Hawaiian_52 0.40 0.48 0.00 0.40 0.36 0.51 0.37 0.40 0.31 0.48 0.42 0.47 0.53 0.49 
Maori_85   0.41 0.48 0.40 0.00 0.37 0.50 0.36 0.40 0.30 0.45 0.44 0.48 0.54 0.51 
NorthMarque 0.45 0.42 0.36 0.37 0.00 0.51 0.39 0.39 0.30 0.41 0.46 0.49 0.51 0.52 
Nukuria_121 0.58 0.41 0.51 0.50 0.51 0.00 0.40 0.51 0.48 0.40 0.39 0.62 0.48 0.45 
Pukapuka_15 0.40 0.36 0.37 0.36 0.39 0.40 0.00 0.41 0.28 0.36 0.29 0.46 0.40 0.43 
Rapanui_264 0.46 0.45 0.40 0.40 0.39 0.51 0.41 0.00 0.37 0.46 0.45 0.48 0.51 0.53 
Rarotongan_ 0.31 0.39 0.31 0.30 0.30 0.48 0.28 0.37 0.00 0.36 0.38 0.37 0.46 0.50 
RennellBell 0.52 0.22 0.48 0.45 0.41 0.40 0.36 0.46 0.36 0.00 0.33 0.58 0.39 0.40 
Samoan_118 0.50 0.28 0.42 0.44 0.46 0.39 0.29 0.45 0.38 0.33 0.00 0.55 0.30 0.40 
Tahitian_17 0.15 0.61 0.47 0.48 0.49 0.62 0.46 0.48 0.37 0.58 0.55 0.00 0.61 0.62 
TongaTongaI 0.57 0.33 0.53 0.54 0.51 0.48 0.40 0.51 0.46 0.39 0.30 0.61 0.00 0.47 
VaeakauTaum 0.58 0.41 0.49 0.51 0.52 0.45 0.43 0.53 0.50 0.40 0.40 0.62 0.47 0.00 

As a final experiment, let us create a tree from the distances, using the simple Neighbor-Joining algorithm, and then print this tree to screen
(ignore the warning, $ python3 autocogs.py tree).

In [27]: wl.calculate('tree', tree_calc='upgma') 
wl.output('tre', filename='mikronesian') 
print(wl.tree.asciiArt()) 

                              /-Rapanui_264 
                    /edge.4--| 
                   |         |          /-Hawaiian_52 
                   |          \edge.3--| 
                   |                   |          /-NorthMarquesan_38 
                   |                    \edge.2--| 
                   |                             |          /-Maori_85 
          /edge.6--|                              \edge.1--| 
         |         |                                       |          /-Pukapuka_152 
         |         |                                        \edge.0--| 
         |         |                                                  \-Rarotongan_58 
         |         | 
-root----|         |          /-Austral_128 
         |          \edge.5--| 
         |                    \-Tahitian_173 
         | 
         |          /-Nukuria_1212 
         |         | 
          \edge.11-|          /-VaeakauTaumako_375 
                   |         | 
                    \edge.10-|                    /-EastFutuna_210 
                             |          /edge.7--| 
                             |         |          \-RennellBellona_206 
                              \edge.9--| 
                                       |          /-Samoan_118 
                                        \edge.8--| 
                                                  \-TongaTongaIslands_136 



It is not up to me to judge how good this tree is, and it may also be wrongly rooted in the display. But you can see that LingPy can also handle
classical tree formats. Although we do not plan to make LingPy a concurrence for tree inference packages, we find it useful to offer Neighbor-
joining and UPGMA just to make it easier for users to quickly evaluate their analyses.
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