LingPy Datastructures

Preliminaries

In this notebook, some basic concepts behind LingPy datastructures shall be illustrated. All examples are based on
the development version of LingPy (2.2).

In [1]: from lingpy import *

Basic Input Format

Let us first have a look at the file we want to work with. This file is a simple sample of four Slavic languages, Russian,
Polish, Czech and Bulgarian. Let's look at its basic format.

In [2]: print(''.join(open("slavic.qlc").readlines()[:91))

Wordlist

DATA

ID CONCEPT LANGUAGE IPA

#

1 all Russian fsie

2 all Polish ffisti

3 all Bulgarian vsiffki
4 all Czech ffIxniz

This input format is pretty straightforward: We have a basic csv-structure with tabstops as separators, and
hash-symbols as comment symbols (they are ignored and only help to account for pretty formatting). The first "real"
line indicates the content of the columns, and the following lines contain the data.

Note that the order of the columns is strictly arbitrary in this format: Whether we put "CONCEPT" first, or
"LANGUAGE", does not make a difference. Similarly, case is ignored (upper case is just for convenience in order to
distinguish the header from the rest of the data for the user looking at the raw text file). Internally, once read into
LingPy, all headers are represented in lower case.

The Wordlist Class

We open this file in LingPy by using the Wordlist class. This is the class that provides the basic datastructure used in
most LingPy calculations. It defines generic methods for input, output, modification of data, and calculation of new
data, that are regularly used in all daugther classes (LexStat, Alignments, PhyBo) that are used for specific
calculations (cognate judgments, alignment analyses, borrowing detection). We load the wordlist by simply calling the
class with the file containing the data as first argument

In [3]: wl = Wordlist('slavic.qglc')

Once we have loaded the data, we can illustrate some specific things that a are handled by a Wordlist. For example,

we can check the length of the Wordlist, which is defined as the number of words in the dataset.

In [4]: len(wl)

Out[4]: 454
We can check width (number of languages) and height (number of concepts):

In [5]: wl.width,wl.height

Out[5]: (4, 110)

In principal, a wordlist is a very flexible format that retrieves all its "hard" information from a rc-file provided as a
default in LingPy. This file provides aliases and data types for the data that is loaded into a wordlist. The idea is a
three-dimensional represent of (linguistic) data. The first dimension is called col (column, usually "language"), the
second one is called row (row, usually "concept"), the third is called entry, and in contrast to the first two dimensions,
which have to consist of unique items, it contains flexible values, such as "ipa" (phonetic sequence), "cogid" (identifier
for cognate sets), "tokens" (tokenized representation of phonetic sequences), etc.

Accessing Data

The key idea of the Wordlist class is that each the multi-dimensional data used in linguistic calculations can be
displayed as a table in which columns represent languages and rows represent concepts. Slicing according to a given
entry is easily done by accessing the respective entry as a class-attribute. In the resulting two-dimensional list,
missing values are given the value 0.

In [6]: ipa strings = wl.ipa
print(ipa_strings[0])
print(ipa_strings[1])

['kratak', 'kra:tki:', 'krutki', ‘'kerotkizj']
['kys', 0, 0, 0]

Note that for Wordlist every value in the original data is an entry. However, the entries which are identified with col
and row are protected and yield unnested output.

In [7]: print(wl.concept[0:10])
print(wl.taxa)

['all', 'ashes', 'bark', 'belly', 'big', 'bird', 'bite (V)', 'black',
'blood', 'bone']
['Bulgarian', 'Czech', 'Polish', 'Russian']

Apart from the class-attributes which are built on the fly, two important methods for specific slicing are provided by
Wordlist, the get_1ist() method and the get _dict () method. The former returns the entries (as specified) for
a given language or concept.

In [8]: russian words = wl.get list(col="Russian",entry = "ipa")
words_for_hand = wl.get list(row="hand",entry="ipa")
print(russian words[0:10])
print(words for hand)

['kerotkizj', 0, 'Ttii', 'jrjto', 'glas', 'rot', 'prizrjtii', 'prizxediiti’',
'egoni', 'znati']
[['reka', 'rovka', 'réka', 'ruka'll]

Note the difference between the output here: The first list is not nested, while the second is. The reason is, that
languages can have multiple words for the same meaning. If multiple words occur, they will be represented in
additional lists.

The latter method returns a dictionary representation of the same data.

In [9]: russian = wl.get dict(language="Russian",entry="ipa")
print(russian['hand'])

['ruka'l
Note that in this case we used language as a keyword instead of col. This is possible, since in the rc-file for our

Wordlist in LingPy, an alias was defined for col. There are more aliases available, and they can easily be changed
by modifying the rc-file which is always loaded before accessing a Wordlist.

In [10]: russian = wl.get dict(doculect="Russian",entry="ipa")
print(russian['foot'])
['nega’l
Note that in contrast to the class attribute that allows us to access Wordlist entries in a two-dimensional list, the
col and row attributes (Language, concept) are not protected by this method. Calling either get list() or

get dict() with entry="1language" will return the (rather strange) output of all languages of a given word of a
given language.

In [11]: russian_language = wl.get dict(doculect="Russian",entry="language")
print(russian_language['foot'])
['Russian']

As a last important feature of the two methods, consider the output that you get if no argument is passed for the
entry keyword.

In [12]: russian_ids = wl.get list(doculect="Russian")
print(russian_ids[0:10])

[430, 0, 378, 100, 104, 233, 65, 69, 117, 185]

If entry is not specified, the Wordlist returns a list if IDs. These IDs are the same IDs that are defined in the input
file under the (protected) ID column. As in the other methods for data accessing the 0 ID indicates a missing entry. In
order to return only existing entries in the get list () method, set the flat keyword to True.

In [13]: russian ids = wl.get list(doculect="Russian",flat=True)
print(russian ids[0:10])

[430, 378, 100, 104, 233, 65, 69, 117, 185, 18]

Using either the get _dict() orthe get 1ist () method to retrieve the IDs of the words in the dataset may turn out
to be useful if one wants slice the data in specific ways. Here, another important way to access data in aWordlist
becomes important. According to procedure, a Wordlist can be treated as a simple dictionary, with the key being
the unique ID.

In [14]: wl[1]

Out[14]: ['all', 'Russian', 'fsie']

In this way, we can likewise iterate over all keys in a wordlist.

In [15]: for key in wl:
if key < 10:
print(wl[key])

['all', 'Russian', 'fsie']
['all', 'Polish', 'f[isti']
['all', 'Bulgarian', 'vsifki']
['all', 'Czech', 'ffIxniz']
['ashes', 'Russian', 'zela'l]
['ashes', 'Polish', 'popiuw']
['ashes', 'Bulgarian', 'pepel']
['ashes', 'Czech', 'popel'l]
['ashes', 'Russian', 'piepzli']

But this is not all! We can use the same names we indicated for the entries in the input file (and all their aliases
defined in the rc- file) to access only specific entries for a corresponding key.

In [16]: for key in wl:
if key < 3:
print(wl[key,"ipa"1)
elif key < 6:
print(wl[key, "language"])
elif key < 10:
print(wl[key, "concept"])

fsie
ffisti
Bulgarian
Czech
Russian
ashes
ashes
ashes
ashes

The above demonstrated methods and techniques for slicing provide a high degree of flexibility for handling wordlists
in your code. Keeping in mind the basic idea of aliasing entries, accessing datapoints from different perspectives,
virtually all transformations of complex data can be done within just a few lines of code.

Manipulating Data

For the manipulation of data, the Wordlist class offers two important methods. The first and most important one (the
second is treated in detail below), the add_entries () method, adds or modifies a new entry by passing the name of
the (new) entry, the source entry for modification, and the function to modify. Using this method, we can add tokens
(tokenized representations of phonetic sequences) to our current wordlist, using the ipa2tokens () function.

In [17]: wl.add entries('tokens', 'ipa',lambda x:ipa2tokens(x))
print(wl.tokens[0])

[[Ikl’ Ir.I’ Ial' Itl’ Ial’ Ikl]’ [Ikl' Irl’ Ia:', Itl’ Ikl’ Ii:I]' [Ikl’
IrI’ IuI’ Itl’ Ikl, Iil]’ [Ikl, Iel’ IrI’ IOI’ Itl, ijl, III, IJ'I]]
What happens here is that the basic internal representation of Wordlist data as a dictionary with integer keys for

each word and a lists as values is extended by one entry. The basic values of a Wordlist along with their position
in this internal representation are stored in the header attribute.

In [18]: wl.header

Out[18]: {'concept': 0, 'doculect': 1, 'ipa': 2, 'tokens': 3}

The ipa2tokens () function is a rough, but flexible way to tokenize IPA-encoded sequences. The full specification of
the method reads as:

ipa2tokens(
istring,
diacritics=None,
vowels=None,
tones=None,
combiners='",
breaks="'.-",
stress=""',"'",
merge vowels=True

)

Note that all None values in this specification indicate that default values are used instead of user-defined values. The
basic idea of the function is that the user passes the basic classes of characters (diacritics, vowels, tones, combining
characters, break characters, and stress characters), with consonants being defined negatively as all the remaining
characters. The function then parses each string accordingly, combining diacritics with preceeding characters, vowels
with vowels, if merge_vowels is set to True, and returns a tokenized representation (a List) of the original string.

In [19]: ipa2tokens("mybloodyhalloween",vowels="aeiouy")

Out[lg]: [Iml’ Iyl’ Ibl, I'LI’ IOOI’ Idl, Iyl, Ihl, IaI’ I'LI' I'LI, IOI’ IWI’ IeeI’
We can now do the same with the tokens what we have done with the other data before. One difference, however, is
that the tokens are stored as a list and not as a string. This is also defined in the rc-file. If tokens are passed in

the input file, they are stored as space-separated strings, and the rc- file determines that tokens are represented
as a list if they are loaded into a Wordlist.

In [20]: wl[1l,'ipa'],wl[1, 'tokens']
Out[20]: ('fsie', ['f"', 'si', 'e'l])

Just in order to illustrate how the internal representation of data is handled by Wordlist, let's add another entry. We
convert the tokens into sound-class strings using the tokens2class method and see what happens to the header.

In [21]: wl.add entries('classes', 'tokens',lambda x:''.join(tokens2class(x,model="'sca'))
wl.header

Out[21]: {'classes': 4, 'concept': 0, 'doculect': 1, 'ipa': 2, 'tokens': 3}

Output

In order to write wordlist data back to file, there are two important methods, one for internal, csv-output, one for
external, formatted output (txt, html, tex). The first method is the output () method. Its basic use is
straightforward: By passing the desired format as a first argument, this format is automatically written to the file whose
name can be specified. So far, we haven't done any calculations, so all we can do is to write the data to a csv-file.

In [22]: wl.output('qlc',filename='slavic2')

Or we can only write out all the taxa in the data.

In [23]: wl.output('taxa', filename='slavic2')
print(open('slavic2.taxa').read())

Bulgarian
Czech
Polish
Russian

The most important output format here is the csv-format. When writing wordlist data to csv, there are more
possibilities. For example, we can specify that only specific columns should be written to file:

In [24]: wl.output('qlc',filename='slavic columns', subset=True,cols=["'language', 'concept

Note that in order to write subsets to csv, we first need to set the subset keyword to True. Using the cols keyword,
we can specify which columns and in which order should be written to file. The formatter keyword can be used to

guarantee "pretty" formatting of the csv-file by grouping the words according to the specified entry with help of
(meaningless) hash (#) symbols.

A further way to export data is by defining specific conditions for the rows. Here, the code is a bit more complex,
since, internally, the eval () function is used to evaluate whether a specific condition for the given row holds. The
conditions are given in the rows keyword, which is a dictionary with the column whose condition should be checked

as key and a Python statement for evaluation passed as a string. The following line thus writes only Russian and
Polish language entries to file.

In [25]: wl.output(

‘qlc’,

filename='slavic rows',

subset=True,

rows=dict(
language="in ['Russian', 'Polish']"
)l

formatter="concept"

)

The second method, the export () method structures the data according to specific sections and entries. Its
use is a bit complicated, but it offers straightforward output to html, tex, or simple structured text.

In [26]: wl.export(
"html',
sections = dict(
hl = ('concept', '<hl>Concept: "{0}"</h1>\n"),
h2 = ('language', '{0} '),
)’
entries = [
('ipa', '[{0}]\n'),
('classes', '<code>"{0}"</code>\n
"),
]’
filename = "slavic export"

)

In [27]: print(''.join(open('slavic export.html').readlines()[0:10]))

<h1l>Concept: "all"</hl>

Russian [fsie]
<code>"BSE"</code>

Polish [f[istsi]
<code>"BSISCI"</code>

Czech [f[Ixni1I]
<code>"BSIGNI"</code>

Bulgarian [vsifki]
<code>"BSICKI"</code>

<h1l>Concept: "ashes"</hl>

Although it looks rather simple in the output, the export () method is very powerful and especially useful for pretty
formatted output in publications. Often, normal readers of publications don't want to read txt-files in the
supplementaries. Using export () to create high-level PDF-files with LaTeX or putting output in html on a website
may come in very handy...

LexStat

Preliminaries

So far, we were only handling the data in some ways and did not come farther than tokenizing our IPA-strings. In order
to calculate distances, trees, etc. we need to carry out cognate judgments. In order to do this, we need the LexStat
class which is a descendant of the Wordlist class. Loading data into LexStat is no different than loading it into
Wordlist. LexStat automatically handles IPA-tokenization, if no tokens are passed from the input file. But once
we already calculated the tokens for our wordlist, we can likewise take the file slavic2.csv for our LexStat
calculation.

In [28]: lex = LexStat('slavic2.qlc')

Cognate Judgments

Carrying out cognate judgments can be done in a simple way, using the cluster () method. We use this method out
of the box for three out of four possible methods ("ned","sca","turchin"), but for the original
"lexstat"-method, we need to calculate a scoring function first, using the get _scorer() method.

In [29]: lex.get scorer(verbose=True,force=True)

Since the calculation of the scoring function is time-consuming, we might want to save the data. This is easy with help
of the generic pickle() method provided by Wordlist. This function creates a cache directory (called
__lingpy_), that stores our current wordlist in as slavic2.bin.

In [30]: 1lex.pickle()

Now we can start the calculation of cognate judgments using the cluster () method. We set the threshold to 0.6

which usually works quite well on simple datasets.

In [31]: lex.cluster(method='lexstat',threshold=0.5)

Output

Having calculated the cognate judgments, we should output the data to another wordlist file.

In [32]: lex.output('qlc',filename='slavic lexstat',6ignore=['scorer'])

If we have a look at the resulting format, we can see that LexStat added a lot of new values, including numerical
references, sonority profiles, sound class strings, etc.

In [33]:

Wordlist

JSON
<json>
{
"params": {
"cscorer": {
"modestring":

print(''.join(open('slavic lexstat.qlc').readlines()[0:40]))

"global-2-0.50:10cal-1-0.50",

"restricted chars": " T",
"method": "shuffle",
"threshold": 0.7,
"preprocessing": "True:upgma:-2",
"ratio": [
2,
1
]I
"runs": 1000,
"factor": 0.3,
"vscale": 0.5
}’
"cluster": "lexstat single 0.50"
}I
"doculect": [
"Bulgarian",
"Czech",
"Polish",
"Russian"
]
}
</json>
DATA
ID CONCEPT DOCULECT IPA TOKENS CLASSES SONARS
PROSTRINGS LANGID NUMBERS WEIGHTS DUPLICATES SCAID LEXSTATID
#
1 all Russian fsie f si e BSE 337 MBX 4
4.B.c 4.5.C 4.E.V 1.1 1.75 1.5 0 1 1
2 all Polish ffisti f [& s & & BSISCI 337327
MBXMBZ 3 3.B.c 3.5.C 3.I.V 3.S5.c 3.C.C 3.I.V 1.1 1.75 1.5 1.1
1.75 0.8 0 1 1
3 all Bulgarian vsifki v s i f k 1 BSICKI 33721
7 MBXMBZ 1 1.B.c 1.s.C 1.I1.vVv 1.C.c 1.K.C 1.1I.V 1.1 1.75
1.5 1.1 1.75 0.8 0 1 1
4 all Czech ffixniz f [T x ni I BSIGNI 3 37 347
MBXBCZ 2 2.B.c 2.5.C 2.I.V 2.G.C 2.N.C 2.I.V 1.1 1.75 1.5 1.75
1.5 0.80 1 1
#
5 ashes Russian zela z e 1l a SELA 375 7 AXBZ 4
4,5.C 4.E.V 4.L.C 4.A.V 2.0 1.5 1.75 0.8 0 2 5

The most interesting columns we find in this output are the SCAID and LEXSTATID. These contain the cognate
judgments for both the simple language-independent SCA-method and the language-specific LexStat-method. Since
the LexStat-method builds on the SCA method, SCA cognate IDs are automatically calculated.

Etymological Dictionaries

Now that we have calculated cognate sets, we can use these to illustrate another important generic method for
data-manipulation provided by Wordlist: the get etymdict () method.

In [34]: etd = lex.get etymdict(ref='lexstatid',entry='ipa')
print(etd[1])

[['vsifki'], ['ffzxniz'], ['ffisti'], ['fsie']]

This method calculates an etymological dictionary of our data. An etymological dictionary is a different representation
of Wordlist data: While in traditional wordlists, rows represent concepts and columns languages, an etymological
dictionary consists of cognate sets which are linked to the words. In our case, an etymological dictionary is a
dictionary with cognate sets representing keys and nested lists representing languages in columns and concepts in
rows, but basically, one can also think of an etymological dictionary as being a two-dimensional list in which the rows
correspond to cognate sets, the cells contain words (or links to their IDs) and the columns represent languages.

In [35]: # define a format function for pretty output
f = lambda x: '{0:10}'.format(x[0]) if x != 0 else '{0:10}'.format('-")

print the taxa in the first row
print('\t'.join([f([1l]) for 1 in lex.taxal]))

print the reflexes
print('\t'.join([f(x) for x in etd[1]]))

print the concepts
print('\t'.join([f(x) for x in lex.get etymdict(ref='lexstatid',entry='concept’

Bulgarian Czech Polish Russian
vsifki ffIxniz ffisti fsie
all all all all

Note that the values in etymological dictionaries are nested lists, since it is not guaranteed that each cognate has only
one reflex in one language. Furthermore, note that missing reflexes for a given cognate set receive a 0 as value in the
etymological dictionary created by Wordlist, and that when not specifying the entry keyword, the etymological
dictionary will use the IDs of the words to reflect their reflexes.

In [36]: etd = lex.get etymdict(ref='scaid')
print(etd[5])
print([lex[x[0], 'ipa'] for x in etd[5] if x != 0])
print([lex[x[0], 'language'] for x in etd[5] if x != 0])
print([lex[x[0], 'concept'] for x in etd[5] if x != 0])

[e, [17], [15], O]
['brIxo', 'bzux']

['Czech', 'Polish']
['belly', 'belly']

Phylogenetic Trees

Wordlist comes along with another method for data manipulation: calculate() can be used to calculate all
different kinds of things, such as distance matrices (counting the number of shared cognates), phylogenetic trees
(using Neighbor-Joining or UPGMA), or major flat groupings of the taxa (using flat cluster algorithms). What these
methods require is that cognate sets are defined in the data. Given that we just calculated them using LexStat, we
can now use the calculate() method to create a phylogenetic tree of the data.

In [37]: lex.calculate('tree',tree calc='neighbor',ref="'lexstatid')

10

When calculating the tree, Wordlist (or LexStat in this case) first calculates distances using the amount of shared
cognate sets among all language pairs and then calculates a phylogenetic tree using the specified method. The tree
itself can be accessed as a newly created attribute of the class. Furthermore, trees are represented with as
PhyloNode objects (borrowed from PyCogent library), and offer a few more nice methods for data-manipulation.

In [38]: print(lex.tree)
print(lex.tree.asciiArt())

(((Bulgarian,Russian),Czech),Polish);
/-Bulgarian
/edge.0--|
/edge.1--| \-Russian
I |
-root----| \-Czech

I
\-Polish

Alignments

Preliminaries

Cognate judgments are surely a good start, even if there is the possibility that the algorithm fails to detect or wrongly
detects cognates. Nevertheless, when dealing only with the identifiers for the cognate sets (" lexstatid",

"scaid"), it is not easy to evaluate what the method actually does, since the csv format for output is simply not very
pleasing to look at.

A simple solution that is alread provided by the Wordlist class is to use the export () method, but this time with an
additional header for cognate IDs.

In [39]: 1lex.export(
"html",
sections = dict(
hl ("concepts", "<hl>Concept: {0}</hl>\n"),
h2 = ("lexstatid", "<h2>Cognate Set: {0}</h2>\n"),
),

entries = [
("language”,"{0}: "),
("ipa","[{0}]
")
]I

filename = "slavic lexstat"

)

11

In [40]: print(''.join(open("slavic lexstat.html").readlines()[0:10]))

<h1>Concept: all</hl>

<h2>Cognate Set: 1</h2>

Bulgarian: [vsifki]
Czech: [ffixniz]
Polish: [f[isti]
Russian:
[fsie]
<hl1l>Concept: ashes</hl>

<h2>Cognate Set: 5</h2>

Russian: [zela]
<h2>Cognate Set: 2</h2>

Bulgarian: [pepel]
Czech: [popel]
Polish: [popiuw]
Russian:
[piepzli]
<hl>Concept: bark</hl>

<h2>Cognate Set: 6</h2>

Bulgarian: [kora]
Czech: [ku:ra]
Polish: [kora]
Russian: [kera]

<hl>Concept: belly</hl>

<h2>Cognate Set: 10</h2>

Russian: [3ivot]
<h2>Cognate Set: 9</h2>

Carrying out Alignment Analyses

An even better solution, however, is to align the reflexes of a given cognate set. This can be done with help of the
Alignments class which is again a direct descendant of Wordlist. When loading data into Alignments, we need
to specify which columns contains the cognate sets, using the ref keyword.

In [55]: alm = Alignments('slavic lexstat.qlc', ref='lexstatid')

In contrast to simple Wordlist objects, Alignments has an additional dictionary which stores all cognate sets
specified when loading it in groups that can then be easily aligned, using LingPy's specific functions for phonetic
alignment. Using the defaults, this can be done very easily.

In [56]: alm.align(verbose=False,ref="'lexstatid"')

Alignments are stored in a specific dictionary attribute called msa. We can access them by specifying which cognate
sets we used ("lexstatid" in our case), and the ID of a given cognate set. Using LingPy's convenient SCA()
method, that creates various alignment objects on the fly (MSA, Alignments, PSA), depending on the input data, we
can easily check out some of the results.

In [57]: msa = SCA(alm.msa['lexstatid']1[1])
print(msa)

v S i I} k i
f I I X ni I
f I i s s i
f s e - - -

Output

Controlling and inspecting alignment analyses on the terminal is not recommended for large files. Hence, it is helpful
to output the data to text files or even other formats. Let us first output the data to csv-format.

In [58]: alm.output('qlc',filename='slavic alignments')

12

When opening this file, we see that all alignments are added to the header of the file, using HTML-like tags.

13

In [59]:

print(''.join(open('slavic alignments.qlc').readlines()[0:12]))

print(''.join(open('slavic alignments.qglc').readlines()[40:60]))

print(''.join(open('slavic alignments.qlc').readlines()[1000:1010]))

print('...\n"')
print('...\n")
Wordlist
JSON
<json>
{
"params": {
"cscorer": {
"ratio": [
2,
1

]l

"vscale": 0.5,
#
<msa id="2" ref="1lexstatid">
Cognate Set: 2 ("ashes")
7 Bulgarian p
8 Czech p
6 Polish p
9 Russian p’
</msa>
#
<msa id="6" ref="lexstatid">
Cognate Set: 6 ("bark")
12 Bulgarian k
13 Czech k
11 Polish k
10 Russian k
</msa>
#
<msa id="12" ref="lexstatid">
Cognate Set: 12 ("big")
21 Czech v €
130 foot Polish n>ga
3.N.C 3.U.V 3.K.C 3.A.V 2.0 1.5
131 foot Bulgarian
1 1.K.C 1.R.C 1.A.V 1.K.c
132 foot Czech noha
2.N.C 2.U.V 2.H.C 2.A.V 2.0 1.5
#
133 full Russian polnij
AXMBYN 4 4.P.C 4.U.V 4.L.
1.3 0.80 47 74
134 full Polish pewni
AXMBZ 3 3.P.C 3.E.V 3.W.
0 47 74
135 full Bulgarian
4 AXBYN 1 1.P.C 1.
0.8 0 47 74
136 full Czech plni:
2 2.P.C 2.L.V 2.N.C 2.1I.V
#
137 give (V) Russian
4 4.T.C 4.A.V 4.T.c

OO Mm

C O cC O

n > g a NUKA

1.75 0.8

14

S 90

[SVT
H

€ 1

€ 1

u w

I 1/

a

a

a

a

i:

4 7 1 7 AXBZ

0 46

KRAK 157

0 45

4 7 3 7 AXBZ

0 46

PULNIJ 175

.J.c 2.0 1.

PEWNI 176

2.01 1.11

n PELEN

1.N.c 2.0 1.

PLNI 17 4
0

TAT 171

0 48

3

73
1 ACXN

72

2

73
476
51.11.75

47

.75 0.8

1757
51.75 1.3

7 AXBZ
47 75

AXN

76

This illustrates a very important additional aspect of the Wordlist csv-format: Apart from the raw word entries, it can
contain additional information, such as, in this case, multiple sequence alignments. But this is not all, Wordlist
reads and outputs additional "meta"-information using the following strategies:

e @key: value: Use this construct in separate lines before the csv-data to pass simple key-value pairs to the
Wordlist that are accessible as simple attributes of the Wordlist object.

e <specific data> ... </specific_data>: Use this construct on multiple lines for predefined
additional data structures, such as multiple alignments (<msa>), distance matrices (<dst>), or taxa
(<taxa>). More constructs will probably be added in the future.

e <json> JSON data </json>: Use JSON datastructures on multiple lines for all kinds of data structures
that are not yet implemented as specific constructs.

Let's have a look at these specific ways of meta-data modeling by calculating some additional data for our
Alignments object and writing it to file.

15

In [60]:

alm.calculate('dst',ref="'1lexstatid"')
alm.calculate('tree',ref="'lexstatid')
alm.calculate('groups',threshold=0.2,ref="'lexstatid")
alm.output('qlc',filename="'slavic metadata')

lines = open('slavic metadata.qlc').readlines()

print('\n...\n")

print(''.join([x for x in lines if '@tree' in x]))

print('...\n")
print(''.join(lines[lines.index('<json>\n'):lines.index('</json>\n")+1]))
print('...\n")
print(''.join(lines[lines.index('<dst>\n'):lines.index('</dst>\n")+1]1))

@tree: (Bulgarian, (Russian, (Czech,Polish)));

<json>
{
"params": {
"cscorer": {
"ratio": [
2,
1
]’
"vscale": 0.5,
"runs": 1000,
"modestring": "global-2-0.50:1local-1-0.50",
"restricted chars": " T",
"factor": 0.3,
"method": "shuffle",
"threshold": 0.7,
"preprocessing": "True:upgma:-2"
I
"cluster": "lexstat single 0.50"
}I
"groups": {
"Russian": "G 4",
"Bulgarian": "G 1",
"Polish": "G 3",
"Czech": "G 2"
}

oculect": [
"Bulgarian",

"Czech",
"Polish",
"Russian"
1
}
</json>
<dst>
4
Bulgarian 0.000000 0.348624 0.318182 0.336364
Czech 0.348624 0.000000 0.201835 0.284404

Polish 0.318182 0.201835 0.000000 0.227273
Russian 0.336364 0.284404 0.227273 0.000000
</dst>

16

As can be seen from this example, the extended csv format is very flexible, and gives the user a lot of freedom to
handle all kinds of different datatypes.

However, for alignment analyses and cognate judgments, one usually wants some other output format which comes
closer to publication plots than to txt-based formats. In order to convert our data into a colorful HTML file that can be
conveniently used for publication or manual evaluation, we can use the plot() function defined for the Alignment class:

In [63]: alm.plot(ref='lexstatid',6 filename="'slavic alignments', show=True)

Getting Preliminary Reconstructions

With help of alignments, some more interesting things can be done. For example, we can calculate preliminary quick-
and-dirty "reconstructions” by calculating the consensus strings of all alignments. A consensus string represents an
alignment by its most frequently occuring characters. That it is not far away from a real reconstruction is reflected in
the fact that on a Polynesian testset the consensus strings are only 2.15 edit operations away from expert
reconstructions. Comparing this score to the 1.9 edit operations that the method by Bouchard-Cété et al. (2013)
yields, this is not too bad for a very, very simple approach. Consensus strings can be calculated with help of the

get consensus () method. The consensus string is stored in an additional column which is named "consensus" as
a default.

In [64]: alm.get consensus(ref='lexstatid')
alm.output('qlc',filename="'slavic_consensus')

Let's check the consensus string for the first ten basic concepts in the Russian list.

In [53]: cons = alm.get dict(col='Russian')
for key in sorted(cons)[0:11]:
print('\t'.join(['{0:10}"'.format(k) for k in [key,alm[cons[key][0],'ipa'],a

all fsie ffetfni
ashes zela zela
bark kera ku:ra
belly 3ivot 3ivot
big bell [oj belifoj
bird ptiitsa ptits
bite (V) kusati kowsat
black fornij forni
blood krofi kref
bone kositi kost
breast gruti gruti

PhyBo

As a last short example and outlook, we have a quick look at the borrowing detection method which is available in the
PhyBo class of LingPy. This method is pretty complex, and it offers very many methods and parameters which have
not yet been fully documented and explored, we make this example very, very quick. In order to load the class, we
need an input file (just like the output file we just created from our alignments, and we need to explicitly import the
PhyBo class, since it is not included in the regular imports of LingPy.

17

In [65]: from lingpy.compare.phylogeny import PhyBo

Now we load the file into PhyBo. Note that we don't need to specify the file extension (csv), since PhyBo expects a
"dataset" as input. Additional data can be passed to PhyBo in additional files with different extensions that have the
same basic file name.

In [67]: phybo = PhyBo('slavic consensus',ref="lexstatid"')

The easiest way to use PhyBo is to use the analyze () method without parameters. This will evoke some default
settings which guarantee a more or less satisfying coverage of analyses to be run.

In [68]: phybo.analyze()

Calculating "Minimal Lateral Networks" (MLN) following the method by Nelson-Sathi et al. (2011), is done by first
computing the MLN using the get_MLN() method. Here, we need to pass an additional argument which is usually the
best model of the analysis. After using the analyze () method, this model is automatically stored in the best _model
attribute of a PhyBo object.

In [69]: phybo.get MLN(phybo.best model)

Plotting the data to a PDF file, can then be done with help of the plot MLN() method.

In [70]: phybo.plot MLN(phybo.best model)

The result of this analysis is the file "slavic_consensus.pdf' (and a lot more data). For four language, the network is
not very impressive, but it should give a first impression on what can be done with LingPy.

18

