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Due to the increasing amount of large digitally available datasets, computational ap-
proaches play an increasingly important role in historical linguistics, and many attempts
have been made to computerize various aspects of the classical comparative method
for language comparison. The article gives an overview on popular and important ap-
proaches which have been developed in the last two decades. These include approaches
to sequence comparison and phylogenetic reconstruction. The former cover the tasks of
cognate and sound correspondence identification in the classical comparative method.
The latter address the genetic classification of language families. We conclude our de-
scription by pointing to recent approaches to borrowing detection and semantic recon-
struction.

1 Introduction

The central method in historical linguistics is the comparative method (Meillet 1954, Weiss 2014).
It has successfully elucidated the history of a wide range of language families of varying size and age
(Baldi 1990, Campbell and Poser 2008) and external evidence has often confirmed the validity of the
findings (McMahon and McMahon 2005:10-14). The comparative method is not just a simple tech-
nique, but rather an overarching framework to study language history (Klimov 1990, Ross and Durie
1996, Fox 1995, Jarceva 1990). This framework has an underlying workflow that scholars implicitly
follow (see Figure 1, following Ross and Durie 1996). The most crucial part is the identification
of cognate words 2⃝ and regular sound correspondences 3⃝. The iterative character of the workflow
requires repetition in all steps. Iteration is important to address circularity problems: cognate words
2⃝ can, for example, only be identified with help of regular sound correspondences 3⃝, but sound
correspondences themselves occur only in cognate words. An iterative procedure circumvents this
problem by starting with an initial hypothesis regarding sound correspondences and cognate words
which is then constantly revised.
Despite its benefit and its successful application, the comparative method has a couple of draw-

backs. Its application is very slow and requires highly trained historical linguists. The procedure
itself lacks transparency, in so far as the scholars’ intuition still plays a major role (Schwink 1994).
It also shows a certain lack of reliability, since neither formal guidelines nor statistical tests are used
to arrive at the hypotheses (Baxter and Manaster Ramer 2000:169-172), which makes it difficult to
guarantee that scholars working independently will arrive at the same conclusions (McMahon and
McMahon 2005:26-29). Given the drawbacks of the manual comparative method and the ever in-
creasing availability of digital data in historical linguistics, it is not surprising that many attempts have
been made to get aid from computers. These attempts are reflected in a quantitative turn in historical
linguistics which started in the beginning of the second millenium and surfaced until now in form of
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Figure 1: Workflow for the comparative method by Ross and Durie (1996) with two major and mul-
tiple minor stages of iteration.

many approaches that automate certain parts of the classical workflow of the comparative method.
Given the complex workflow of the classical comparative method, it is obvious that none of the auto-
matic approaches proposed so far has ever tried to replicate it entirely. Instead, automatic approaches
often also set an additional focus and follow different paths. As an example, Table 1 contrasts the
modules of the classical workflow, as given in Figure 1, with popular automatic approaches. As can
be seen from the table, nearly all of the major modules of the comparative method are addressed
in at least one published approach. However, there is no strict overlap between any of the classical
“modules” and the modern automatic approaches.

# Classical HL Computational HL Examples

1⃝ proof of language relationship probability testing Baxter and Manaster Ramer (2000), Kessler (2001),
Ringe (1992)

phonetic distance Jäger (2015)

2⃝ cognate set identification matching sound classes Turchin et al. (2010)
phonetic distance and
partitioning List (2012a, 2014b), Steiner et al. (2011)

3⃝ sound correspondence
identification phonetic alignments Kondrak (2000), List (2012b), Prokić et al. (2009),

Prokić and Cysouw (2013)
4⃝ linguistic reconstruction probabilistic string transducer Bouchard-Côté et al. (2013)
5⃝ identification of innovations various methods for lexical,

gramm., and morphol. data
Chang et al. (2015), Gray and Atkinson (2003),
Jäger (2015), Longobardi et al. (2013a), Ringe et al.
(2002)6⃝ phylogenetic reconstruction

7⃝ etymologies (borrowing detection) van der Ark et al. (2007), List et al. (2014a), Nelson-
Sathi et al. (2011)

(ancestral state reconstruction) Jäger and List (2016), List (2015)

Table 1: Comparing computational approaches in historical linguistics with the classical comparative
method: Approaches in brackets in the “Computational HL” column reflect only certain
aspects of the original workflow.

Judging from their accessibility, accuracy, and acceptance, the most developed approaches in com-
putational historical linguistics are approaches to sequence comparison and phylogenetic reconstruc-
tion, which can be roughly identified with working steps 2⃝ and 6⃝ of the workflow by Ross and Durie
(1996). In the following, we will briefly introduce the main ideas and the major methods and algo-
rithms behind these approaches. In a further section we will then point to recent promising attempts
to tackle further challenges in automatic language comparison.

2 Sequence Comparison

The basis of the classical comparative method, the identification of regularly corresponding sounds
and cognate words in genetically related languages, is essentially a very specific task of sequence
comparison, since the phonic substance of words, morphemes, and also sentences manifests itself in
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dependence of time (de Saussure 1916:103), and our linguistic theories of phonology andmorphology
allow us to cut these streams into units which distinguish or constitute meaning. For this reason, it
seems legitimate to make use of general approaches to sequence comparison, developed in computer
science and evolutionary biology, to compare linguistic sequences. Note that in this context, we
follow the working steps 2⃝ and 3⃝ of the comparative method in taking words and morphemes as
our primary linguistic sequences.

2.1 Alignment Analyses

Comparing sequences at an abstract level requires the identification of those segments which match
across sequences, that is, those segments which are identical or share a common history. For example,
when comparing the sound sequences English daughter [dɔːtɚ] with Greek thigatera [θiɣatɛra], we
know from the historical development of the words that English [d] corresponds with Greek [θ], as
does English [t] with Greek [t]. This kind of analysis is at the core of all endeavour in historical
linguistics, since it is the only way to identify regular sound correspondences across cognate words in
different languages (see Figure 2). Alignment analyses are a very general and convenient way to model
differences between sequences. In alignment analyses, sequences are arranged in the rows of a matrix
in such a way that all corresponding segments occur in the same column (Gusfield 1997:216). In order
to ease the visualization, it is furthermore common to fill empty cells in the matrix with gap symbols
(usually a dash: -). Empty cells result from segments which do not match with other segments, such
as the two instances of [a] in Greek thigatera, which do not have an English counterpart.

Cognate List Alignment Correspondence List
German dünn d ʏ n GER ENG Frequ.

d θ 3 x
d d  1 x
n n 2 x
m m 1 x
ŋ ŋ 1 x

English thin θ ɪ n
German Ding d ɪ ŋ
English thing θ ɪ ŋ
German dumm d ʊ m
English dumb d ʌ m
German Dorn d ɔɐ n
English thorn θ ɔː n

... ... ...irregular 
form!

Figure 2: Sequence comparison as the basis for sound correspondence detection. The figure shows
how correspondence counts are derived from the alignments of putative cognate words.
When correspondences occur only sporadically, as the one between [d] and [d] in German
and English, this is provides evidence that the words are not regularly related (German
dumm is an irregular reflex of Old High German tumb, probably under influence of Low
German varieties).

Alignment analyses are a very common way to model differences between sequences and regularly
used across different scientific fields, such as molecular biology (Durbin et al. 2002), spelling cor-
rection (Oflazer 1996), or plagiarism detection (Horton et al. 2010). Implicitly, the use of alignment
analyses dates back to the founding days of historical linguistics, when Rasmus Rask (1787–1832)
and Jacob Grimm (1785–1863) laid the foundation of the notion of sound laws (Rask 1818, Grimm
1822), although the earliest explicit visualization of sound correspondences with help of alignment
analyses we could find so far dates back to the beginning of the 20th century (Dixon and Kroeber
1919). Since the middle of the 1990s automatic alignment analyses, developed in biology and com-
puter sciences from the 1970s onwards (Needleman and Wunsch 1970, Wagner and Fischer 1974)
have also been increasingly applied in historical linguistics and dialectology (Kessler 1995, Nerbonne
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et al. 1996, Covington 1996, Kondrak 2000), and today, one can say that they play a crucial role in
the quickly developing field of quantitative linguistics. Figure 3 illustrates the basic ideas behind
pairwise alignment analyses in historical linguistics with help of the two words English daughter and
Greek thigatera.

θ i ɣ a t ɛ r a

d ɔ t ɚ

A

θ i ɣ a t ɛ r a

d ɔ t ɚ

C θ i ɣ a t ɛ r a

d ɔ t ɚ- - - -

D

θ i ɣ a t ɛ r a

d ɔ t ɚ

B

Figure 3: Alignment of English and Greek words for ‘daughter’. A shows the starting point with both
words unaligned. B shows the matching process in which cognate sounds are identified
between both words. C shows how the words are re-arranged so that cognate sounds appear
in the same column of a fictive matrix. D shows the resulting alignment in which dashes as
gap symbols have been introduced to fill those slots in which a sound in one word does not
have a matching counterpart in the other words.

2.1.1 Pairwise Phonetic Alignment

For reasons of complexity it is common to distinguish between pairwise and multiple alignment anal-
yses. Even the pairwise alignment of two strings can become really complex, since the number of
possible alignments increases drastically with the length of the sequences (Rosenberg and Ogden
2009). While there are only 681 possibilities for the alignment of two strings of the length 5 and 4,
there are 8 097 453 possibilities for two strings of length 10 and 10 (Torres et al. 2003). For this
reason, automatic algorithms cannot simply test all possible alignments between two sequences but
need to employ a smart search strategy that minimizes the search space instead. The development of
the general strategy to tackle this problem, which is still used today, goes back to the 1970s, when
biologists (Needleman and Wunsch 1970) and computer scientists (Wagner and Fischer 1974) inde-
pendently proposed an efficient solution for the global alignment problem. Due to its different origins,
this algorithm is usually called Needleman-Wunsch algorithm (NW algorithm) in the context of bi-
ology, and Wagner-Fischer algorithm in computer science. Although both algorithms do not differ
in their basic strategy, they differ in their output. While the Needleman-Wunsch algorithm yields
a similarity score between two sequences, the Wagner-Fischer algorithm yields a distance score. In
historical linguistics, the Needleman-Wunsch algorithm is the preferred variant in computational ap-
plications (Kondrak 2000, List 2012c). In computational dialectology, theWagner-Fischer algorithm
is commonly used.¹
The basic idea of the Needleman-Wunsch and the Wagner-Fischer algorithm is to reduce the

problem of finding an optimal alignment of two sequences by ‘using previous solutions for optimal
alignments of smaller subsequences’ (Durbin et al. 2002:19). This approach is known as dynamic
programming and defines a family of algorithms with very similar characteristics (Eddy 2004). It
would go beyond the scope of this chapter to present the dynamic programming algorithm for pair-
wise alignment analyses in all detail. For a detailed description of the Needleman-Wunsch algorithm
¹In computational dialectology, the algorithm is often falsely labelled as Levensthein algorithm, named after V. I. Lev-
ensthein. While Levenshtein proposed a distance measure for the comparison of two sequences in 1965, he never
published the algorithm to automatically compute it.
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along with many examples, we refer the readers to Kondrak (2002:20-65) and List (2014b:77-82).
An interactive demo of theWagner-Fischer algorithm is presented in (List 2016b) and can be directly
accessed at http://lingulist.de/pyjs/demos/wf-demo.html.
Themajor components of the algorithm are a scoring functionwhich handles the similarity between

segments, and themain loopwhichmanages how sequences are compared in general. Following these
two components, one can therefore make a distinction between substantial and structural extensions
to the basic algorithm which play both a crucial role in phonetic alignment analyses in historical
linguistics. Substantial extensions define how sounds are compared by the algorithm. In its sim-
plest form, only two kinds of differences are defined: two segments are either identical, or different.
When dealing with distance scores, as in the Wagner-Fischer algorithm, this could be expressed by
giving a score of 0 for segment identity and a score of 1 for segment difference. When dealing with
similarities, one usually gives a negative value to different segments and a positive value to similar
ones. The score for a whole alignment between two sequences is usually identical with the sum of
the distance or similarity scores for all segment pairs in an alignment. Applied to the alignment in
Figure 3, the distance score would sum up to 7, since there is only one segment pair out of 8 pairs in
the alignment which is identical.
As we can see from this high score for two words which are actually cognate, this distinction is not

very satisfying, since we know that sounds may exhibit very fine-grained degrees of similarity, and
trained historical linguists would probably agree that the difference between a [p] and an [f] is quite
different from the difference between a [p] and a [k]. One seemingly natural solution would be the
use of distinctive features to describe each sound and a rough comparison of the features, using, for
example, the Hamming distance (Hamming 1950) to derive a similarity score for individual sound
pairs. The disadvantage of this naive feature approach is that all features are given the same weight,
although we intuitively know that certain features are more relevant for historical comparison than
others. The ALINE algorithm proposed by Kondrak (2000) addresses this problem explicitly by
proposing multi-valued features from which individual weights for sound pairs are derived. An alter-
native to feature-approaches is to reduce the phonetic space by clustering sounds into classes which
frequently occur in correspondence relation in genetically related languages (Dolgopolsky 1964). The
advantage of sound classes is that they are very flexible and very easy to handle. All that needs to be
defined is a mapping from a phonetic transcription to a simpler sound class transcription. Following
Dolgopolsky’s sound class approach, for example, English daughter could be rendered as “TVTV”,
and Greek thigatera could be rendered as “TVKVTVRV”, and aligning the words with the classical
Needleman-Wunsch algorithm would yield the correct alignment. Furthermore, transitions between
sound classes can be easily defined and passed as an extended scoring function to the alignment al-
gorithm. Sound classes are used in different versions across different research projects. Turchin
et al. (2010) and Kassian et al. (2015) use Dolgopolsky’s original sound class system of 10 consonant
classes for cognate detection. The ASJP project (Holman et al. 2008b) employs a sound class system
of 40 classes (34 consonants and 6 vowels), and the SCA algorithm employs an expanded Dolgo-
polsky system of 28 classes (List 2012c). The three sound class models are contrasted in Figure
4.
Apart from the substantial extensions using feature scores or sound class models, various structural

extensions to the basic algorithm have been proposed and tested in the past. While the basic algo-
rithm, for example, compares two sequences globally, thus trying to match all segments completely,
local alignment, first proposed by Smith and Waterman (1981), allows to search for the best scoring
subsequence between to sequences instead. Essentially, a local alignment may refuse to completely
align to strings, ignoring prefixes and suffixes. Thus, while a global alignment analysis of English
strawberry [strɔːbərɪ] and German Erdbeere [eːrtbeːrə] would try by all means to align not only the
cognate parts of the words (-berry and -beere), but also the unrelated morphemes straw- and Erd-.
A local alignment algorithm, however, would simply leave those parts unaligned. Similar to local
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Figure 4: Illustrating the differences between different sound class systems. The graphic shows dif-
ferent sound class systems and how they reduce phonetic space. A is the model by Dolgo-
polsky (1964), B is the model by List (2012), and C is the model by Holman et al. (2008).
D illustrates the sound class conversion for Greek thigatera.

but less strict are semi-global alignment analyses (Durbin et al. 2002:26f). In semi-global alignment
analyses, prefixes or suffixes in either of the sequences can be ignored, but it is not possible to strip
off two prefixes or two suffixes in both sequences. As a result, a semi-global alignment analysis of
strawberry and Erdbeere would try to match the [t] in straw with the [t] in the phonetic transcription
of Erd since the overall similarity of the sequences would be higher.
As a very specific modification of the basic algorithm, List (2012c) proposes secondary alignment

(List 2014b:88-91). In contrast to traditional alignment analyses, be they global, local, or semi-global,
secondary alignment allows to define a secondary layer of segmentation, like, for example, syllable
or morpheme boundaries. The core idea of the secondary alignment extension of the basic algorithm
is that these boundaries are preserved during the whole alignment process. As a result, no single
morpheme in one sequence can be aligned with two other morphemes in the other sequence. This
is especially important for alignment analyses of South East Asian languages, where the majority of
all words consist of more than one morpheme. Aligning Hǎikǒu Chinese日 [zit³] ‘sun’ with Běijīng
Chinese 日頭 [ʐʅ⁵¹tʰou¹] ‘sun’, for example, normal alignment algorithms would certainly match
the [t] in Hǎikǒu with the [tʰ] in Běijīng, ignoring that the latter belongs to another morpheme.
Provided that morpheme boundaries are indicated in the words, secondary alignment correctly aligns
both words, since the alignment of Hǎikǒu [t] and Běijīng [tʰ] would contradict the rule that one
morpheme in one word can only be aligned with one morpheme in the other word.
Different software packages and algorithms for alignment analyses in historical linguistics and

dialectology have been proposed in the past. Table 2 roughly compares those which are most fre-
quently mentioned in the literature for a couple of different aspects, such as the basic method, the
modes (structural extensions), the scoring function (substantial extensions) and the availability.

2.1.2 Multiple Phonetic Alignment

Pairwise alignment algorithms themselves are not of a great interest for historical linguistic appli-
cations when considering only the task of aligning to words with each other in isolation, since this
may well be done faster manually than to load one of the different programs mentioned above, not
to speak of the fact that a trained linguist will usually outperform the computer. When carrying out
large-scale comparisons of 20 and more languages or 100 and more dialect points, however, auto-
matic pairwise alignment approaches can be very useful to aggregate linguistic distances between
languages and dialects. Even more interesting, however, are multiple alignments, since they allow
linguists to get a very fast impression of the diversity for a given set of cognate words, but also and
especially, since they may bring in additional evidence, which could be overlooked when only con-
sidering words from the perspective of sequence pairs (Haas 1969:41, Fox 1995:68). The major
problem of multiple alignment analyses is the problem of increasing complexity. While the dynamic
programming solution for pairwise alignment is fast enough to make an exhaustive search for the op-
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Algorithm Author Method Modes Scoring Availability

Covington Covington
1996

tree search global rudimentary scoring scheme
disfavoring vowel-consonant
matches

-

JAKARTA Oakes 2000 greedy strategy global different sound change types with
unified penalties

-

ALINE Kondrak
2000

dynamic program-
ming, Needleman-
Wunsch

global, semi-
global, local

multi-valued features C++, Python, https:
//sourceforge.net/
projects/pyaline/

GabMap Nerbonne et
al. 2011

dynamic program-
ming, Wagner-
Fischer

global identity scorer preventing match-
ing of vowels and consonants

server application, http:
//www.gabmap.nl

ASJP Holman et al.
2011

dynamic program-
ming, Wagner-
Fischer

global identity scorer applied to sound
class model of 40 classes, only
distances are computed, no align-
ments returned

Fortran code and Win-
dows executable, http:
//asjp.clld.org

SCA List 2012 dynamic program-
ming, Needleman-
Wunsch

global, semi-
global, local,
secondary

different sound class models with
extended scoring function

Python library, http:
//lingpy.org

PMI Jäger 2013 dynamic program-
ming, Needleman-
Wunsch

global weighted alignment with scoring
function for ASJP sound classes
inferred from pairwise language
comparisons

Python implementation

Table 2: Comparing different pairwise alignment algorithms in historical linguistics

timal alignment (given the assumptions which are encoded in the scoring function and the structural
extensions), extending this algorithm to multiple sequences would yield computation times that grow
exponentially with the number of sequences being analyzed (Bilu et al. 2006). For this reason, all
algorithms for multiple alignment analyses are usually based on heuristics which are not guaranteed
to find an optimal solution, but perform well enough in practice.
Among the most popular algorithms used for multiple alignment analyses are progressive alignment

techniques (Feng and Doolittle 1987, Thompson et al. 1994). Progressive alignment consists of two
stages. First, a guide trees is constructed, representing the distances between the sequences. Second,
moving from the branches to the root, the sequences are successively aligned with each other. For the
construction of the guide tree, different cluster algorithms can be used (cf. see also Section 3). Most
biological algorithms use either UPGMA (Sokal and Michener 1958) or Neighbor-Joining (Saitou
andNei 1987). Both algorithms require amatrix of pairwise distances between all sequences as input.
These distances are usually calculated by computing the pairwise alignments between all sequences.
Figure 5 illustrates the process of climbing up the guide tree until all sequences are aligned for the
three cognate words English daughter, German Tochter, and Greek thigatera.

tʰ ɔ x tʰ ɐ
d ɔː ˗ t ɚ θ i ɣ a t ɛ r a

d ɔː ˗ ˗ t ɚ - -
tʰ ɔ x ˗ tʰ ɐ - ˗

tʰ  ɔ  x tʰ ɐ

d ɔː t ɚ

θ i ɣ  a t ɛ r a

Figure 5: Progressive alignment of three words for daughter in English, German, and Greek.

Progressive alignment can be further enhanced by using specific methods to pre- and post-process
the data. A very useful preprocessing approach that is quite popular in biological alignment algorithms
is the idea of consistency-based alignmentswhichwas first proposed alongwith the T-Coffee algorithm
for multiple sequence alignment in biology (Notredame et al. 2000). The basic idea of consistency-
based alignments is that a good multiple alignment should be maximally consistent with a set of
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independently computed pairwise alignments of the sequences. This set of pairwise alignments is
called a library, and the library itself can be filled by using different alignment approaches, such as,
for example, global, and local alignment analyses between the sequence pairs. Since global and local
alignments may well differ, especially in cases of very diverse sequences or in linguistics in cases of
words which are only partially cognate, the inclusion of global and local information may drastically
change the result of an alignment analysis. The T-Coffee algorithm assembles the information in
the library in a two-stage approach. First, a new scoring function is initialized for all segments in
the data, based on the pairwise alignments in the library. Second, a set of composite alignments
is constructed by aligning each pair of sequences in the data through the rest of all sequences. The
composite alignments are then used to further modify the scoring function. The newly derived scoring
function is then used along with a classical progressive approach to compute the multiple alignment
of all sequences. Various post-processing methods have been proposed in biology. Among the most
popular strategies are methods for iterative refinement (Barton and Sternberg 1987, Gotoh 1996, Do
et al. 2005). In these approaches, a given multiple alignment is split into two or more parts and then
re-aligned. This procedure is repeated until the general alignment converges (Rosenberg 2009:58).
Despite the increased application of pairwise alignment analyses, the application of multiple align-

ment analyses is still in its infancy in historical linguistics and dialectology. Covington (1998) was the
first to propose an algorithm for multiple phonetic alignment analyses, but the approach employed an
inefficient tree-search and was only tested on up to three sequences. Later in 2009, Prokić et al. used
the ALPHAMALIG algorithm (Alonso et al. 2004) to align cognate words in a large dataset of 152
words reflected in 192 Bulgarian dialects. The algorithm was originally designed to study discourse
structure in NLP tasks and employed an iterative strategy that was not further explicated in the paper
presenting the algorithm. However, comparing the automatic alignments with a manually compiled
gold standard, the authors reported a high accuracy.
List (2012b) presented a progressive alignment implementation of the SCA algorithm for pairwise

alignments, based on Dolgpolsky and ASJP sound classes as representation format. In addition to
the sound class representation, the algorithm introduced prosodic profiles to account for the fact that
different positions of a word show different degrees of strength and weakness with respect to change
(Geisler 1992). These profiles which assign each sound segment in a word to one of 7 different classes
of prosodic strength are used to individually adjust the scoring of gaps. As a result, the algorithm
tries to avoid to leave initial consonants of a word unaligned, while final consonants and vowels are
more easily tolerated. As a new method for post-processing the new method also contained a routine
to automatically search for instances of metathesis. A test on the Bulgarian gold standard by Prokić
et al. (2009) showed that the new algorithm largely outperformed the ALPHAMALIG approach List
(2012b). List (2012c) further expanded the SCA algorithm by using an improved sound class model
of 28 sequences and employing the T-Coffee method for pre-processing and iterative strategies for
post-processing. The expanded version of the algorithm was tested on an enlarged gold standard of
750 multiple alignments (List and Prokić 2014) and showed a very high accuracy with more than
90 percent agreement with the gold standard. Jäger and List (2015) presented a fully automated
workflow for language comparison in which they compare the SCA algorithm with a new version of
the T-Coffee algorithm that was integrated into Jäger’s (2013) PMI algorithm for pairwise alignments.
The comparison of the accuracy of phylogenetic reconstruction inferred from the alignments, showed
that phylogenetic trees inferred from words aligned by the PMI-T-Coffee algorithm came closer to
expert judgments than trees constructed with help of the SCA algorithm.
Although they are still only rarely applied, multiple alignment analyses bear a great potential for

quantitative historical linguistics and computational dialectology. The algorithms show a high accu-
racy in comparison with experts alignments. The computation is rather fast, and alignments of more
than 200 words can be easily computed within seconds. Furthermore, multiple alignments are visu-
ally easy to process and straightforward in the representation of sequence differences. Along with
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Taxon Alignment
American English d ɑ - ɾ ɚ -
Australian English (Perth) d ɔ - ɾ ɜ -
Belgian Dutch d ɔ x t - r
Canadian English d ɔ - ɾ - ɹ
Central German (Cologne) d ɔː χ t ɒ -
Central German (Honigberg) d oɪ ʃ t ə ɾ
Central German (Luxembourg) d ʊɪ ʃ t ɐ -
Central German (Murrhardt) d ɔ χ t ɔ ʁ
Danish d ɛ - ɾ ʌ -
Dutch d ɔ χ t ə ɹ
Dutch (Antwerp) d ɔ x t ə s
Dutch (Limburg) d ɔ - t ə χ
Dutch (Ostend) d ɔ χ t ə s
English (Buckie) d o - θ ɐ ɾ
English (Lindisfarne) d ɔʊ - t ɐ ʁ
English (Liverpool d͡ð ɔː - t ə -
English (London d oʊ - ʔ ə -
English (North Carolina) d ɑɔ - ɾ - ɹ
English (Singapore) d ɔ - tʰ ɜ -
English (Tyrone) d ɔː - t ɚ -
Faroese d ɔʰ - tː ə ɹ
German t ɒ χ t ɐ -
High German (Biel) t ɔ χ t ə ɾ
High German (Bodensee) d ɔ x t ə ʁ
High German (Graubuenden) d ɔ χ t - r
High German (North Alsace) d oː χ t ə χ
High German (Ortisei) d ɔ χ t ə χ
High German (Tuebingen) d ɔ χ t ɔ -
High German (Walser) d ɔ x t ɛ ɾ
Icelandic d ɔ - tʰ ɪ z
Indian English (Delhi) d ɔ - t ɜ -
Low German (Achterhoek) d ɒ χ t - ʁ
Low German (Bargstedt) d ɔ χ t ɐ -
New Zealand English (Auckland) d ɔ - ɾ ə -
Nigerian English (Igbo) d ɔ - t ə -
Norwegian (Stavanger) d a - tʰ ə ʁ
Scottish d ɔ - tʰ ə ɹ
South African English (Johannisburg) d ɔ - tʰ ɛ -
Swedish (Skane) d o - t - ʁ
Swedish (Stockholm) d ɔ - tː ɛ ɾ
West Frisian (Grou) d ɒ χ t ə r
Yiddish (New York) tʰ ɔ χ t ɛ ɾ

Figure 6: Alignment analysis of 42 words for daughter across different Germanic languages and di-
alects. The alignment was manually prepared as part of the Benchmark Database for Pho-
netic Alignments (List and Prokić 2014). The visualization was plotted with help of the
LingPy Python library for quantitative historical linguistics (List and Moran 2013).

enhanced visualization techniques as they are now available in software packages such as LingPy (List
and Moran 2013) where alignments can be plotted as HTML or PDF files with colors highlighting
the sound classes of the phonetic values, they offer an immediate look at the diversity in the data.
As an example, Figure 6 shows a multiple alignment of 42 words for daughter in different Germanic
languages, taken from the Germanic subset of the Benchmark Database for Phonetic Alignments (List
and Prokić 2014) (which is based on Renfrew and Heggarty 2009).

2.2 Cognate Detection

In the previous section we tried to illustrate how classical approaches to historical linguistics could
profit from automatic alignment analyses, both as a tool that helps to visualize linguistic data in its
complexity and to formalize those assumptions which are so far mostly made implicitly. Taken align-
ment analyses alone, however, there is not much we can gain when trying to establish computational
models of major workflows of the comparative method, since the performance of alignment algo-
rithms relies on what we feed them. So, while an algorithm would align no matter which words we
present it, our interest in alignments is restricted to alignments of those words which are actually
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historically related, that is, words which are cognate. This brings us to one of the bigger task of
quantitative historical linguistics, which can likewise be considered as one of its “holy grails” (List
2014b), the task of automatic cognate detection. In the following, we will try to shed some light on the
major ideas behind recent automatic approaches to cognate detection, as well as the major challenges
which have not yet been sufficiently solved.

2.2.1 The Automatic Cognate Detection Task

In order to get a clearer view on how the cognate detection task can be handled automatically, it is
helpful to state it in terms of input and output, that is, what data we feed to an algorithm, and what
data we hope to get back. In the following, we will assume that the input is amultilingual word list. A
multilingual word list is hereby understood as a list that is organized onomasiologically by giving a set
of meanings and their translations in different languages. Since cognate detection deals with phonetic
sequences, the translations should be given in some form of phonetic transcription, preferably in IPA.
Furthermore, since IPA is often ambiguously used, especially regarding the treatment of affricates,
which may often resemble two sounds (compare [ts] which is used to denote the affricate [ts͡] and the
the combination of [t] with [s]), but also regarding certain diacritics (compare [ʰ] which may denote
pre- and post-aspiration), we will assume that the phonetic transcription is explicitly segmented, for
example, by using a space to mark phoneme boundaries. Regarding the concepts in the word list, we
can think of a typical Swadesh list, like the 200 item list proposed by Swadesh (1952), but it should
be clear that in many cases, 100 or 200 items may just not provide enough information to sufficiently
identify cognates and sound correspondences (List 2014a). For the output we want to have when
applying an algorithm for automatic cognate detection is a clustering of all words in the data into sets
of cognate words. For the sake of simplicity, we will assume that cognate sets will be restricted to
words denoting the same meaning, but it is clear that ultimately, it would be desirable to search for all
cognates in the data regardless of the meaning of the words, since according to the classical definition
of cognacy, cognate words do by no means need to have the same meaning (Trask 2000:64). The
fundamental input and output requirements for the automatic cognate detection task are illustrated
in Figure 7.

ID   Language   Concept   IPA

...  ...        ...       ...

21   German     woman     frau

22   Dutch      woman     vrou

23   English    woman     wʊmən

24   Danish     woman     kvenə

25   Swedish    woman     kviːna

26   Norwegian  woman     kʋinə

...  ...        ...       ...

ID   Language   Concept   IPA    Cognate

...  ...        ...       ...    ...

21   German     woman     frau   1

22   Dutch      woman     vrou   1

23   English    woman     wʊmən  2

24   Danish     woman     kvenə  3

25   Swedish    woman     kviːna 3

26   Norwegian  woman     kʋinə  3

...  ...        ...       ...    ...

Figure 7: Input and output of the automatic cognate detection task. The input is a multilingual word
list with words reflecting the translations of a set of meanings into different languages. The
output is a word list in which words with the same meaning are clustered into cognate set.
Clustering decisions are represented by adding cluster numbers in the “Cognate” column.
Words with the same cluster number are assigned to the same cognate sets.

2.2.2 Basic Approaches to Automatic Cognate Detection

Essentially, cognate detection is a clustering task, since the goal is to cluster words into cognate classes.
More precisely, it is a partitioning task, since we do not necessarily assume any hierarchical ordering
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inside or among the different classes of cognate words, we only want to have the different parts of
the data, as if we cut a piece of paper into different pieces.
There are different ways how a partitioning of words into cognate classes can be achieved. A first

and very early approach was presented in Dolgopolsky (1964) and is based on the above-mentioned
idea of sound classes. When using a very rough sound class system, as the system of ten consonant
classes proposed by Dolgopolsky, one could assign all words to the same cognate set which share
the same sound classes. This idea was later followed up by scholars from the comparative linguistics
circle in Moscow and even implemented as part of the STARLING database system Burlak and
Starostin (2005:270-275). As a general rule, all approaches assign words which match in their first
two consonant classes to the same cognate set.² Turchin et al. (2010) employed this Consonant Class
Matching approach (CCM), using a modified sound class model of 9 consonant classes, along with
additional probability tests to test the Altaic hypothesis. Kassian et al. (2015) use the same approach
to test deeper relations between Indo-European andUralic languages. In both cases, scholars reported
a low rate of false positives produced by this method. This was confirmed in List (2012a), where an
explicit comparison of the CCM approach and alternative approaches was carried out. However, this
study also showed that the CCM approach tends to produce many false negatives, that is, it misses
many valid cognates. Figure 8 illustrates this method by showing how it would cluster the data of
Figure 7 into cognate sets. Implementations of the method are currently online available as part of the
STARLING software package (Starostin 2000), online at http://starling.rinet.ru, and
as part of the LingPy Python library (List andMoran 2013), online available at http://lingpy.
org.

ID   Language   Concept   IPA    ConsClass Cognate

...  ... ...       ...    ...       ...

21   German     woman     frau   FR          1

22   Dutch      woman     vrou   FR          1

23   English    woman     wʊmən  FMN         2

24   Danish     woman     kvenə  KFN         3

25   Swedish    woman     kviːna KFN         3

26   Norwegian  woman     kʋinə  KFN         3

...  ...        ...       ...    ...       ...

Figure 8: The Consonant Class Matching method for automatic cognate detection

The major advantage of the CCM approach is its simplicity. As a result, computation is really fast,
which makes it a perfect method to be applied to very large datasets or inside lightweight computer-
assisted workflows in which linguists first use an automatic approach to search for cognates and then
manually correct the results. The major drawback of the CCM approach is that it misses many
valuable cognate sets. This lack in resolution power results from two problems: First, consonant
classes are treated as absolute entities which can only be identical or different. Second, restricting the
matching consonant classes to the first two consonants of the words deprives the approach of valuable
information. Comparing English daughter and German Tochter, for example, the CCM method will
classify both words as not being cognate with each other, since the first consonant classes of the former
(“TT”) do not match those of the latter (“TK”). Using an alignment algorithm instead of the static
matching procedure, for example, would immediately show that there are two valuable matches of
“T” and one mismatch of “K” in German, which might give a good hint regarding common ancestry
of the words. As another example, consider English tooth (“TT”) and German Zahn (“KN”), which
look completely different regarding their consonant class representation although the sound changes
between both words are completely regular. While it seems useful to state a certain closeness between
alveolar affricates and velars, it would be at least as useful to state a closeness between alveolar

²Word-initial vowels are hereby assigned to the same consonant class as word-initial glottal stops.
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affricates and alveolar stops.
An alternative family of approaches to cognate detection circumvents these problems by first cal-

culating distances or similarities between all word pairs in the data, and then feeding those distance
scores to a flat clustering algorithmwhich partitions the words into cognate sets. This workflow is very
common in evolutionary biology, where it is used to detect homologous genes and proteins (Bernardes
et al. 2015). While distances can be calculated in many different ways, the most straightforward way
to calculate them is to use pairwise alignment analyses. Many algorithms for data partitioning based
on pairwise distance matrices are available in the literature. One possibility here is to employ hier-
archical clustering algorithms like UPGMA (Sokal and Michener 1958) and terminate them once a
certain threshold of pairwise similarities or distances is reached. Another possibility is to use graph-
based partitioning algorithms (Andreopoulos et al. 2009). In these methods, words are represented as
nodes in a network and links between them are drawn when the pairwise similarity exceeds a certain
threshold. Graph-based clustering algorithms then further try to partition the nodes in the network
into groups by adding or removing links (Frey and Dueck 2007, van Dongen 2000). Figure 9 gives
an illustrative example on how the words shown in Figure 7 can be clustered into cognate sets with
help of a flat hierarchical cluster algorithm.

German Frau frau

Dutch vrouw vrou

English woman wumin

Danish kvinde kveni

Swedish kvinna kvina

Norwegian kvine kwini

German [frau] 0.00 0.95 0.81 0.70 0.34 1.00

English [wʊmən] 0.95 0.00 0.78 0.90 0.80 0.80

Danish [kvenə] 0.81 0.78 0.00 0.17 0.96 0.13

Swedish [kvinːa] 0.70 0.90 0.17 0.00 0.86 0.10

Dutch [vrɑu] 0.34 0.80 0.96 0.86 0.00 0.89

Norwegian [kʋinə] 1.00 0.80 0.13 0.10 0.89 0.00
Germ

an

English

Danish
Swedish

Dutch
Norwegian

Figure 9: Flat clustering strategy to automatic cognate detection. Pairwise word distance on the left
are used to derive an hierarchical cluster of the words. The clustering process stops when
a certain threshold is reached (here indicated by dotted lines in the cluster on the right).

To our knowledge, Bergsma and Kondrak (2007) were the first to present a cognate detection
approach based on a clustering algorithm applied to pairwise word distances. Their approach was
based on the longest common subsequence ration, which is derived from a global pairwise alignment
of two strings by dividing the number of identical sounds in two words by the length of the longer
word. They then use an integer linear programming approach to partition the words into cognate sets.
Steiner et al. (2011) compute Needleman-Wunsch alignments between all word pairs in a meaning
slot and then use a cluster algorithm which is not further specified for the task of cognate partition-
ing. Their approach is interesting in so far, as it is part of an iterative pipeline which learns scores
from pairwise alignments and even searches for cognate sets across different meanings in the word
list. Hauer and Kondrak (2011) employ a machine learning approach that is trained with different
pairwise sequence similarities to decide whether two words are cognate or not. They then use a flat
version of the UPGMA clustering algorithm that terminates when clusters reach a certain threshold
of average similarities. List (2012a, 2014b) employs a similar flat clustering algorithm but computes
word similarities with help of an iterative approach that first searches uses global and local alignment
analyses to search for potential sound correspondences in all language pairs and then uses these pairs
to derive a language-specific scoring function. This function is used to realign all words, and the
alignment scores are then passed to the scoring function. List (2014b) compares this LexStat ap-
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proach with the CCM approach and two further clustering approaches, one based on the normalized
edit distance (NED) and one based on distances derived from SCA alignments. The test, carried out
on a gold standard of expert cognate judgments on six datasets covering five language families and
a total of more than 16 000 words showed that the LexStat performed best, followed by the SCA
and the NED clustering. The CCM method performed worst, due to a very high rate of false nega-
tives. Jäger and Sofroniev (2016) develop an approach where various variables derived from string
similarities computed by means of Jäger’s (2013) PMI algorithm are used for supervised training of
a Support Vector Machine (a machine-learning algorithm for automatic classification), trained with a
collection of data manually annotated for cognacy. This method performed slightly better than the
LexStat approach when applied to unseen data.
Hall and Klein (2010, 2011) and Bouchard-Côté et al. (2013) present an alternative family of ap-

proaches to cognate detection which is essentially based on a phylogenetic model that reconstructs
how words evolved along a phylogenetic tree, distinguishing between mutations (instances of sound
change during which the word retains its cognate class) and innovations (lexical replacement). The
authors describe different models of varying complexity, ranging from simple global alignments up to
complex models which may even include rudimentary ways to handle phonetic context (Bouchard-
Côté et al. 2013). All of these approaches requires a reference phylogeny of the languages under
investigation to be known in advance. Due to the complexity of the problem of detailed evolutionary
scenarios for the development of characters along a tree, they also require the use of sophisticated
machine learning techniques. The authors present flavors of this basic idea and test it on different
datasets for Austronesian languages, reporting high scores of cognate recovery. In addition to cluster-
based approaches to cognate detection or variants of the CCM method, these phylogeny-based ap-
proaches to cognate detection also reconstruct ancestral word forms, which makes it possible to test
the realism of the models by comparing reconstructions based on the comparative method with the
automatically produced reconstructions.
All approaches to cognate detection mentioned above have their advantages and disadvantages.

The CCM method is very easy to understand, very straightforward to implement in software, and
very fast in application. It is thus the recommended method for large datasets which are not analyz-
able with help of complex and time-consuming algorithms, but also very useful for computer-assisted
workflows in which all automatically computed output is manually corrected by trained experts. The
drawback of the CCMmethod is its high rate of false negative judgments. Cluster-based approaches
to cognate detection offer a more elaborated alternative to CCM approaches. They usually outper-
form the CCMmethod, but their lower rate of false negatives may come to the price of a higher rate of
false positives, especially when naive alignment algorithms, such as the normalized edit distance are
being used. The increased complexity requires longer computation times, which makes it difficult to
integrate the methods in lightweight applications for computer-assisted frameworks. The increased
accuracy, which may reach almost perfect agreement with human experts in smaller datasets of shal-
low time depths (List 2014b), however, is a great advantage, especially in exploratory applications
of understudied language families. Phylogeny-based approaches to cognate detection are the com-
putationally most advanced of the methods which have been proposed so far. Their advantage is
their explicitness regarding the processes they model, and their output which does not only yield de-
cisions regarding the cognacy of words, but also distinct evolutionary scenarios regarding the way the
words in the data evolved into their current shape. Their disadvantage is their complexity which re-
quires the application of complex and time-consuming machine learning approaches. Furthermore,
phylogeny-based approaches cannot be applied for the purpose of data-exploration, since they require
all languages in the data to be known to be related. While the LexStat method, for example, could
be used to test a relationship hypothesis between two or more languages (List 2014b:203-205), this
is not possible for phylogeny-based approaches to cognate detection.
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German Frau frau

Dutch vrouw vrou

English woman wumin

Danish kvinde kveni

Swedish kvinna kvina

Norwegian kvine kwini
Innovation
Mutation

Figure 10: Phylogeny-based approach to cognate detection. Given a phylogeny (a tree), the method
tries to identify optimal scenarios of character evolution by which words can either mutate
(change their sound shape slightly) or innovate (be replaced by another word).

2.2.3 Future Challenges for Automatic Cognate Detection

The methods for automatic cognate detection which have been proposed so far are definitely promis-
ing and can already in their current state provide great help, especially in exploratory data analysis,
but also in computer-assisted approaches to the comparative method. They rest, however, a couple
of serious shortcomings which future research needs to address. As first problem to mention in this
context is the problem of borrowing: None of the methods proposed so far can sufficiently handle
borrowing. Language-specific (as opposed to language-independent) methods which are based on
the computation of individual sound correspondences between language pairs, can rule out sporadic
borrowings between languages, but they also fail when borrowing is intense. Possible solutions would
require a stratification analysis in which sound correspondences for different parts of the lexicon are
investigated and the resulting correspondence patterns compared. List (2014a:98f) illustrated for a
dataset of English, German, Dutch, and French, that stratification analyses in which sound corre-
spondences are only inferred for stable parts of the lexicon and then used to detect cognates across
all data could help to drastically reduce the amount of erroneously classified borrowings from French
to English. However, these results came at the cost of a generally increased rate of false negatives.
A further challenge are the different shades of cognacy which can be observed in lexical datasets

(List 2016a). While all algorithms model cognacy as a distinct relation between words which is either
present or absent, words can exhibit manymore degrees of relatedness. Comparing French soleil with
Italian sole ‘sun’, for example, it is clear that the words are cognate. While sole, however, goes directly
back to Latin sol, soleil goes back to Vulgar Latin soliculus ‘small sun’ which itself is a derivation of sol
(Meyer-Lübke 1911). Morphological processes which shape the form of words results in unalignable
parts among cognate words. Apart from the secondary alignment algorithm (see Section 2.1.1) which
allows to force an alignment algorithm to avoid the matching of one morpheme with two or more
other morphemes, no further methods which take unalignable parts into account have been proposed
so far.
A last challenge is the unification and propagation of common formats and open software appli-

cations in the field of computational historical linguistics. The majority of the proposed methods
for phonetic alignment and cognate detection which have been proposed in the past have never been
published in form of software packages. So far, the only approaches to cognate detection which are
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online available are the CMM approach which is implemented in the STARLING software package
(Starostin 2000) and the LexStat approach, which is, along with other methods, implemented in the
LingPy software package (List and Moran 2013). The same applies for benchmark datasets. While
many methods have been tested in comparison with gold standards, there is no study which would
compare the performance of the methods on the same gold standard. In addition, the majority of
the tests which have been carried out did not publish the data which would be needed to replicate the
analyses. In order to increase the replicability of research in the quickly evolving field of quantitative
historical linguistics, it is indispensable that scholars change their attitude and start to publish data
and source code along with their research papers.

3 Phylogenetic Reconstruction

3.1 General remarks

Phylogenetic reconstruction is the task to infer a family tree from language data. Computational biol-
ogists have developed a rich toolbox for the corresponding task of reconstruction evolutionary history
from biomolecular or morphological data. Most of these tasks are, mutatis mutandis, applicable in
computational historical linguistics as well.
On a general level, computational phylogenetic reconstruction has the same goal as family tree

reconstruction according to the comparative method. Both approaches strive at construction of tree
diagrams, with observed languages at the leaves, where internal nodes represent inferred historical
language stages. The adequacy criteria for computationally derived phylogenies are somewhat dif-
ferent though from those for traditional family trees, which has to be kept in mind when interpreting
the results.

3.1.1 Phylogenetic trees

Phylogenetic trees come in two varieties, as unrooted or rooted trees. Mathematically speaking, an
unrooted phylogenetic tree topology is a connected undirected acyclic graph. Nodes with a degree
1 (i.e., nodes only connected to one branch) are called leaves or tips. A rooted phylogenetic tree
topology is an unrooted topology where one node is designated as root. An unrooted topology is
binary branching if all nodes except the tips have degree 3. Similarly, a rooted topology is binary
branching if the root has degree 2 and all other nodes have degree 1 or 3. Figure 11 shows an unrooted
and a rooted topology. The rooted topology is obtained from the unrooted one here by adding a root

A

B

C

D

F

G

E H

C
D

A
B

I

F

E

G H

Figure 11: An unrooted (left) and a rooted (right) tree topology

node on the branch from C to D.
In an unrooted topology, each branch induces a binary split between the set of leaves. For instance,

in the left tree in Figure 11, the branch from D to F splits the leaves into the set {A,B,E} and {G,H}.
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This is to be interpreted as the claim that the two sets differ with respect to some feature(s). An
unrooted topology is agnostic though with regard to the direction of the time arrow. It is left open
which of the two sets represents an innovation and which one a retention.
In a rooted toplogy, time flows from root to leaves.
A phylogenetic tree (unrooted or rooted) is obtained from a topology by assigning a (non-negative)

length to each branch.
The interpretation of branch lengths is sometimes subtle. They only have a well-defined meaning

in connection with a quantity r, expressing the rate of change. If t is the length of a branch, r · t
expresses the amount of change that happened along that branch. How this relates to historical time
depends on how much r varies between lineages.
In practice, whenever historical dating is not an issue, r is assumed to be constant, and branch

lengths can directly be interpreted as a measure of the amount of change. In studies dealing explicitly
with historical dating though (such as, e.g., Bouckaert et al. 2012), branch lengths express assumed
historical time (and r is assumed to vary across branches).

3.1.2 Inferring trees

The literature contains a vast variety of methods for phylogenetic inference, differing both with re-
gards to the type of data used and the required computational resources. Due to space limitations, we
will discuss only two extreme ends of the spectrum here in any detail:³ Neighbor Joining (Saitou and
Nei 1987), a highly efficient method which is applicable to a wide range of data types, and Bayesian
phylogenetic inference, which is highly resource intensive and requires a highly specific type of data.
The latter method affords a much richer and more fine-grained interpretation than the former.
For concretness’ sake, we defined three data collections over a small sample of languages, which

will be used as running examples throughout this section. The sample of languages consists of twenty-
five Indo-European languages: Bengali, Breton, Bulgarian, Catalan, Czech, Danish, Dutch, English,
French, German, Greek, Hindi, Icelandic, Irish, Italian, Lithuanian, Nepali, Polish, Portuguese, Ro-
manian, Russian, Spanish, Swedish, Ukrainian, andWelsh. We use three types of data:

• Swadesh lists in IPA transcription, taken from the Indo-European Lexical Cognacy Database
(IELex; http://ielex.mpi.nl/, accessed on April 6, 2016),

• expert cognate classifications of Swadesh list entries (likewise taken from IELex),⁴ and

• phonological, grammatical and semantic classifications of languages (taken fromWALS,http:
//wals.info/, accessed on April 2, 2016; Haspelmath et al. 2008).

A small subset for each of those data collections are displayed Table 3 for illustration.

3.2 Distance-Based versus Character-Based Methods

Depending on the type of input data, phylogenetic algorithms fall into two categories. Distance-
based methods operate on a matrix of pairwise distances between the languages to be classified. The
distance between two languages is a measure of the amount of divergent changes that occurred in the
two lineages since their latest common ancestor. A distance measure is useful for this purpose if on
average, the distance between two languages grows monotonically with the combined time between
their latest common ancestor.

³For a comprehensive treatment, the interested reader is referred to (Felsenstein 2004) or Section III of (Lemey et al.
2009).

⁴We only included those entries from IELex where both an IPA transcription and a cognate classification is given.
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language phonological form cognate class order of subject, object and verb
(IELex) (IELex) (WALS)

Bengali - - SOV
Breton - - SVO
Bulgarian muˈrɛ sea:B SVO
Catalan mar; maɾ; ma sea:B SVO
Czech ˈmɔrɛ̝ sea:B SVO
Danish hɑw/søˀ sea:K/sea:J SVO
Dutch ze sea:J no dominant order
English si: sea:J SVO
French mɛʀ sea:B SVO
German ze:/’o:ts͜ea:n/me:ɐ̯ sea:J/sea:E/sea:B no dominant order
Greek ˈθalaˌsa sea:F no dominant order
Hindi - - SOV
Icelandic haːv/sjouːr sea:K/sea:J SVO
Irish ˈfˠæɾˠɟɪ sea:G VSO
Italian ˈmare sea:B SVO
Lithuanian ˈju:rɐ sea:H SVO
Nepali - - SOV
Polish ˈmɔʐɛ sea:B SVO
Portuguese maɾ sea:B SVO
Romanian ˈmare sea:B SVO
Russian ˈmɔrʲɛ sea:B SVO
Spanish maɾ sea:B SVO
Swedish hɑːv/ɧøː sea:K/sea:J SVO
Ukrainian ˈmɔrɛ sea:B SVO
Welsh - - VSO

Table 3: Phonetic, cognacy and typological data
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Character-based methods require as input a character matrix, i.e. a matrix with languages as rows
and discrete characters as columns. A discrete character is a classification criterion with a finite num-
ber of possible values. Each character must have the same range of possible values. The cognate
classifications from IELex and the typological classifications in WALS violate the latter condition.
They can easily be transformed into the required format though by converting them into binary for-
mat. This is achieved by treating each feature-value pair F, v as a character, with the value “1” for
languages having value v for feature F , and “0” otherwise.⁵
To be useful for phylogenetic inference, a character must display a certain diachronic inertia with-

out being completely invariant. Furthermore, phylogenetically informative character should have the
Phylogenetic Markov Property. This can be illustrated with a schematic example. Consider the left
tree topology in Figure 11, and let F be a character, with F (L) being the value of F for language L.
The Phylogenetic Markov Property demands that once we know which value F (C) has, we cannot
learn anyting about F (A) from F (B), F (D), or F (E). Formally, we have⁶

Phylogenetic Markov Property Let T be a phylogeny and X,Y , and Z nodes of T such that Y is
on the path from X to Z. Let F be a character.
F has the Phylogenetic Markov Property if and only if

F (X) ⊥⊥ F (Z)|F (Y ).

This condition is, for instance, violated if languages A and B have been in contact after they
diverged, and A borrowed a character value from B.
Since few, if any, linguistic variables are immune to borrowing, it is questionable whether this

condition is ever fully satisfied if the languages considered have been in contact. As we will see
below, this does not preclude the applicability of phylogenetic inference, but language contact should
be kept in mind as biasing factor when interpreting the results.

3.3 Distance-Based Methods: Neighbor Joining

A phylogenetic tree implicitly defines a pairwise distance between any pair of leaves as the length of
the path between those two leaves. If matrix pairwise distances between languages is given (i.e., has
been obtained from empirical data), the fit of a tree to the empirical data is the better the more the
empirical distances coincide with the distances predicted by the tree. Distance-based phylogenetic
inference is the problem to find a phylogenetic tree that has a good fit with a given matrix of distances.
For brevity’s sake, we will only discuss one instance of this general paradigm (there is a plethora
of alternative though). Before that, we will consider the question how linguistic distances can be
obtained.

3.3.1 Computing linguistic distances

Depending on the data being considered, there is a multitude of ways to estimate linguistic distances.
We will consider one such method for each of our three data types.
If we work with word lists in phonetic transcriptions, a frequently used approach is to start with

string similarity scores that can be obtained from pairwise sequence alignment (see Subsection 2.1.1).
Similar approaches to phylogenetic inference have been used, among others, in (Holman et al. 2008a).

⁵If the value of F for some language L is undefined — either because F is not applicable to L or because the value is
unkown —, L’s value is undefined for all binary characters derived from F as well.

⁶The notation “a ⊥⊥ b|c” means “a and b are conditionally independent given c.
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In (Jäger 2013, 2015) one such method is proposed which will briefly be discussed here.
The underlying intuition is the following: Suppose Swadesh lists for two languages, A and B, are

given, but they are unordered and the word meanings are not known. If A and B are closely related,
it is easy to guess which words are translations of each other because these word pairs will be cognate
and therefore phonetically similar. When A and B diverge further, the similarity between cognate
pairs will decrease due to phonetic change, and some words will be replaced by non-cognate words.
Generally, the task of spotting translation pairs in the two word lists will be the harder the more time
has passed since the latest common ancestor of A and B.
This idea is operationalized as a quantitative measure in the following way. All word pairs from

A and B are arranged in order of decreasing string similarity. String similarity is determined via
globale pairwise alignment using the parameters proposed in (Jäger 2015). (For illustration, the first
fifteen pairs from this list for Russian/Lithuanian are shown in Table 4. The 1st, 14th and 20th line
are translation pairs.) The assignment of translation pairs can be coded as the list of ranks of the rows

Russian word Russian meaning Lithuanian word Lithuanian meaning similarity score similarity rank

sʲi’dʲɛtʲ ‘sit’ sʲe:ˈdʲe:tʲɪ ‘sit’ 8.57 1
zvʲɛz’da ‘star’ lɐzˈdɐ ‘stick’ 7.23 2
tʃɛrvʲ ‘worm’ tʃʲɛ ‘here’ 6.45 3
vʲa’zatʲ ‘tie’ ˈvardas ‘name’ 6.16 4
dutʲ ‘blow’ ˈduɔtʲɪ ‘give’ 5.56 5
stʃi’tatʲ ‘count’ ˈʃʲɪltɐs ‘warm’ 5.11 6
kalʲɛ’nɔ ‘knee’ ˈka:lnɐs ‘mountain’ 5.08 7
’dumatʲ ‘think’ ˈduɔtʲɪ ‘give’ 5.01 8
zamʲɛr’zatʲ ‘freeze’ mʲɛˈdʲʒʲotʲɪ ‘hunt’ 4.99 9
rʲɛ’ka ‘river’ ɾɐŋˈkɐ ‘hand’ 4.97 10
pʲatʲ ‘five’ pɐs ‘at’ 4.92 11
’maɫɔ ‘few’ ˈma:ʒɐs ‘small’ 4.77 12
tʃɛ’satʲ ‘scratch’ tʃʲɛ ‘here’ 4.74 13
snʲɛg ‘snow’ sʲnʲjæɡɐs ‘snow’ 4.67 14
vɔ’da ‘water’ ˈvardas ‘name’ 4.67 15
da’vatʲ ‘give’ ˈtʲe:vɐs ‘father’ 4.66 16
zɔˈɫa ‘ashes’ ʒoˈlʲe: ‘grass’ 4.50 17
tra’va ‘grass’ ˈtʲe:vɐs ‘father’ 4.41 18
bɔˈrɔtʲsʲa ‘fight’ ˈba:ltɐs ‘white’ 4.31 19
umʲi’ratʲ ‘die’ ˈmʲiɾʲtʲɪ ‘die’ 4.30 20

Table 4: Word pairs from Russian/Lithuanian, arranged according to string similarity

withmatchingmeanings in this list. Each rank k can be coded as a binary number with ⌈log2 k⌉ digits,
so in average we need

∑n

i=1
⌈log2 ri⌉/n bits to encode one translation pair (where n is the number of

translation pairs and ri the rank of the ith translation pair in the list). If no information about string
similarities were given, the same information would have to encoded on the basis of some arbitrary
order, which requires on average a number of ⌈log2N⌉−1 bits, whereN is the total number of word
pairs. So by utilizing string similarities, we save (

∑n

i=1
⌈log2 N⌉−1−⌈log2 ri⌉)/n many bits. For larger

values of n, this value can be approximated by the following formula, which gives a measure of the
similarity between the languages in question (the subscript p indicates “phonetic”):

simp(A,B)
.
=

∑n
i=1− log2 ri

N

n
− 1

The similarity between A and B is maximal if A = B. Empirically, this value is in the range
between ca. 6 and 12. For entirely unrelated languages, the expected value is 0. Bymaking the natural
assumption that similarity converges with an exponential rate towards 0 with decreasing divergence
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time between A and B, we arrive at the following estimate for the divergence time:

dp(A,B) = − log simp(A,B)

maxA′,B′ simp(A′, B′)

This method is perhaps somewhat reminiscent of Greenberg’s (e.g., Greenberg 1987) “lexical
mass comparison” since it operates on superficial string similarities regardless of regular sound cor-
respondences or other linguistic analyses. Our method avoids two of Greenberg’s pitfalls though: It
explicitly takes chance resemblances into account and calibrates string similarities accordingly, and
it only considers word pairs with identical meanings. This considerably reduces the impact of false
positives. (See Jäger 2015 for more discussion of this issue.)
Deriving a distance measure from data in character format is more straightforward, even though

there is a variety of options here as well, depending on one’s assumptions about the dynamics of
character evolution.
For the purpose of illustration, let us consider a binary character matrix. For simplicity’s sake,

we assume that characters change there value according to a specific mutation rate (i.e. character
values follow a continuous time Markov process) that mutation rate is equal between characters and
between lineages. Furthermore we assume that a change 1 → 0 is common while the inverse change
is negligibly rare. This makes sense for instance if characters are cognate classes, as by definition,
a cognate class cannot emerge more than once in a tree (except via borrowing), while it might be
lost in multiple lineages. For presence/absence of WALS-style feature values, this assumption is less
obvious. It might still be a viable approximation as most WALS features have several values, so the
probability of loosing a value is much higher than the probability of gaining it.
LetA andB be two languages. We only consider characters with a defined value for both languages.

Let 1A be the set of characters for which A has value 1, and likewise for 1B . The divergence time
between A and B can then be estimated⁷ as

dc(A,B)
.
= − log |1A ∩ 1B|2

|1A| · |1B|
.

3.3.2 Computing the Neighbor Joining tree

The Neighbor Joining algorithm (Saitou and Nei 1987) is an agglomerative algorithm taking a matrix
of pairwise distances over some set of taxa (e.g., languages) as input and computing an unrooted
phylogenetic tree over those taxa as output. It can be informally sketched (discussing the precise
mathematical formulation would go beyond the scope of this chapter; see for instance Lemey et al.
2009, pp. 150–153, for a detailed explanation) as follows:

• Startwith a distancematrixD (where dij is the distance between trees i and j) and a collection
of trees T where each tree consists of just one taxon.

• While |T | > 1, do
– Pick the pair of trees (a, b) such that dab is small but dac and dbc are for all c ̸= a, b, on

average, large.

⁷Derivation: Suppose a character F has value 1 in B. By assumption, it must have had value 1 in the latest common
ancestor of A and B, since there are no mutations 0 → 1. Let t(A) be the time depth of A since its latest common
ancestor withB. The probability of value 1 is an exponentially decreasing function of t(A), i.e.P (F (A) = 1|F (B) =
1) = e−rt(A) for some constant rate r. This probability can be estimated as the relative frequency of characters
having preserved value 1 inA, i.e. |1A∩1B |/|1B |. Therefore t(A) can be estimated as− log(|1A∩1B |/|1B |)

r
. By the same

argument, we have t(B) = − log(|1A∩1B |/|1A|)
r

. Therefore t(A) + t(B) = − log |1A∩1B |2/(|1A|·|1B |)
r

. Dropping 1/r
only changes this estimate by a constant factor.
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– Construct a new tree x with a root and a and b as its daughters. Compute the lengths of
the new branches and dxc for all other trees c ∈ T .

– Remove a, b from T and the corresponding rows and columns from D.

• Output: the single member of T .

The output is always an unrooted binary branching tree.
Neighbor Joining is computationally very efficient; computing a tree over several hundreds of taxa

does not take more than a few seconds or at most minutes on a modern personal computer. The
algorithm is widely used in computational biology. It is included in all standard phylogeny soft-
ware programs such as Phylip (Felsenstein 2005), Paup* (Swofford 2002), SplitsTree (Huson 1998),
MEGA (Kumar et al. 2016), or LingPy (List and Moran 2013).
The Neighbor Joining (NJ) tree is an approximation to the optimal tree according to theMinimum

Evolution criterion (Gascuel and Steel 2006). This criterion favors trees that minimize the total sum
of branch lengths in the tree — i.e., trees that assume a minimal amount of evolutionary change
— while maximizing the fit to the input distance matrix. There is no guarantee that the NJ tree is
the optimal tree according to this criterion though. Finding this optimal tree is computationally not
feasible since there are too many different tree topologies for an exhaustive search as soon as the
number of taxa exceeds ca. ten, and there is no more efficient method for this task. However, the NJ
is in most cases a very good approximation to the optimal tree.
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Figure 12: Neighbor Joining trees
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Figure 12 shows the NJ trees for the three distance matrices from our running example. All three
trees largely identify the established subgroupings of Indo-European correctly. There are some note-
worthy deviations in detail though. To mention the most conspicuous ones: All three trees treat
English as an outlier within the Germanic branch. According the phonetic and the cognacy tree,
French is an outlier within Western Romance, and according to the WALS tree, French is even
closer to the Celtic than to the remaining Romance group. In the cognacy tree, Nepali is located on
the Greek rather than the Indic branch, and in theWALS tree, Lithuanian is deeply embedded within
the Slavic branch, with Czech as its closest neighbor. Also, in the WALS tree Bulgarian and Greek
form a group, and Russian is excluded from the Slavic group as well.
There are various possible reasons for such descrepancies. Groupings in an automatically inferred

phylogeny mostly reflect common ancestry, but they may also indicate language contact or convergent
evolution. Last but not least, they may be statistical artifacts due to an insufficient amount of data.
Branch lengths provide a first heuristics on the reliabilty of groupings. For instance, in the cognacy

tree the branch from Nepali to the split from Greek, as well as the branch separating Greek+Nepali
from the rest, are very short. This indicates that the location of Nepali in this tree is not strongly
supported by the data. The Greek+Bulgarian grouping in the WALS tree, on the other hand, seems
to be strongly supported.
The degree of statistical support for phylogenetic branches can be quantified via resampling tech-

niques such as bootstrapping. If n data points (such as characters or concepts in Swadesh lists) are
available, n data points are drawn from the original data at random with replacement. In the resulting
sample, some original data points will occur multiple times and others will not occur at all. The
resampled data are used for a complete analysis, i.e., distance estimation plus inference of a NJ tree.
This procedure is repeated 100 times, leading to 100 trees. If a branch has high support in the data, a
corresponding branch (i.e., a branch inducing the same bipartition of languages) will occur in many
bootstrap trees, and vice versa. From this collection of trees a majority consensus tree is constructed.
This is a tree topology which has exactly those branches which occur in at least 50% of the bootstrap
trees.
Bootstrap consensus trees for our three data sets are shown in Figure 13. These topologies are

to be interpreted as unrooted; they are displayed with the root at the node with the highest degree.
Internal branches are annotated with bootstrap support values, i.e., the percentage of bootstrap trees
having this branch. It turns out that most oddities of the original NJ trees have little statistical support
and therefore do not figure in the consensus trees. This holds, e.g., for the groups Nepali+Greek in
the cognacy tree, and French+Celtic in the WALS tree. It is also noteworthy that the WALS tree
contains neither a Romance nor a Slavic group. On the other hand, a bipartition Balto-Slavic +
Indic vs. the Western branches does have strong support in the WALS data. Also, the groupings
Czech+Lithuanian and Bulgarian+Greek are well-supported. The latter presumably results from a
selection of non-independent features (of the nine character values that are identical for Czech and
Lithuanian but different for Polish, say, six pertain to the morphosyntax of negative morphemes).
The Bulgarian+Greek grouping arguably reflects language contact within the Balkan Sprachbund.
The fact that Nepali comes out as isolated within Indo-European in the cognacy tree reflects data

sparseness. Our data set only contains 16 entries for Nepali (as opposed to, e.g., 192 entries for
English). It is noteworthy in this connection though that 16 words are sufficient for a correct classi-
fication in the phonetic tree. To appreciate this point, it should be noted that those 16 words contain
73 phonetic segments, as opposed to just 16 cognate class labels. Quite generally, the richness of the
phonetic data overall afford a better classification than with cognacy or typological data, even though
little linguistic knowledge is reflected in the raw data.
This discussion illustrates an important methodological point. Phylogenetic inference is a valuable

tool, but it should not be treated as an infallible oracle. It has major advantages in comparison to
manual methods: it does not suffer from a confirmation bias, results are replicable, the degree of
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Figure 13: Bootstrap trees

support by the data for a certain hypothesis can be quantified etc. Still, its results are always in need
of interpretation, which requires careful inspection of the original data.
Distance-based phylogenetic inference has been applied to linguistic problems, inter alia, in (Hol-

man et al. 2008a, Jäger 2015, Jäger and Wichmann 2016, Longobardi and Guardiano 2009, Longo-
bardi et al. 2013a,b), and (Sicoli and Holton 2014).

3.4 Character-Based Methods

Distance-based inference uses character-based data in a sub-optimal way in several respects. When
computing pairwise distances from a character matrix, differences between characters are essentially
brushed over. Also, the criteria that are optimized in distance-based inference — such as Minimum
Evolution with Neighbor Joining — do not have an intuitive interpreation. Perhaps most severely,
the output is essentially a black box. We get a phylogeny with branch lengths, but we learn nothing
about the behavior of the individual characters in different parts of the tree.
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3.4.1 Maximum Parsimony

Character-based inference tracks the behavior of each character and each character value individ-
ually. As distance-based inference, character-based inference comes in many flavors. Its simplest
incarnation is Maximum Parsimony inference (Fitch 1971).
Suppose we have a character matrix plus a rooted tree topology, and a value for each character at

each node. This is schematically illustrated in Figure 14. For each branch, the character state at the

A C CA B B

A

B B

B

C

Figure 14: Tree with character states at internal nodes

mother node and the daughter node are compared, and each state combination is assigned a score.
In the simplest case, identical states have score 0 and non-identical ones score 1. The sum of all
scores then expresses the total number of mutations the character in question underwent for the given
scenario. In the example in Figure 14, we would have two mutations, i.e. a score of 2. The sum of
the scores for all characters is the mutation score of the given phylogenetic scenario.
For a given tree topology, the length of the tree is its minimal mutation score consistent with this

topology. Even though the number of possible annotations of internal nodes grow exponentially
with the size of the tree and the number of characters, this quantity can be computed efficiently (for
instance by means of the Sankoff algorithm; cf. Sankoff 1975). The maximum parsimony topology is
the topology with the smallest length for a given character matrix. Intuitively, it is the ancestral state
reconstruction assuming the fewest number of mutations consistent with the data.
There is no efficient way to find this topology. In principle one could go through all topologies over

a given set of leaves, compute the length, and then pick the best. However, the number of possible
topologies over a given set of leaves grows hyper-exponentially with the number of leaves. For n
leaves, the number of unrooted bifurcating topologies is given by the formula (Felsenstein 1978)

(2n− 3)!

2n−2(n− 2)!
.

For 20 taxa, this amounts to ca. 1022 different tree topologies, for 30 taxa ca. 5 × 1038, for 50 taxa
ca. 3 × 1076. The numer of rooted trees and of non-binary trees grow even faster. Even with
modern super-computers, an exhaustive search of the tree space over more than ten leaves or so is
not possible.
In practice one uses optimization heuristics to find a tree with a length close to the optimal one.

The search algorithm starts with some easy-to-obtain supoptimal but good tree (such as the NJ tree)
and modifies the topology locally until no improvement is possible anymore. There is no guarantee
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though that this local optimum is the globally optimal tree.
MaximumParsimony inference is implemented for instance in the software packagesPhylip (Felsen-

stein 2005) and Paup* (Swofford 2002). Running an analysis on a personal computer for a medium-
sized (several dozens of languages) data-set may take between seconds and hours, depending on the
data. As a rule of thumb, Maximum Parsimony is slow if the number of characters is small. While
this might be surprising, it is due to the fact that the evaluation of a single topology is fast even for
many characters, but the search space is huge. With few characters, there are many ties, which makes
heuristic search hard.
A noteworthy application of Maximum Parsimony to infer linguistic phylogenies is (Dunn et al.

2005).

3.4.2 Maximum Likelihood

Maximum Parsimony is conceptually simple and appealing, but it has several drawbacks. All muta-
tions are equally penalized. However, some character are more stable than others, so mutations of
the former should be penalized more than the latter. Also, a mutation on a long branch is more likely
than one on a short branch, but branch length information is not utilized.
These shortcomings are avoided by the Maximum Likelihood framework.⁸ Again we start with a

rooted tree with character state annotations at the internal nodes, as in Figure 14. Branch lengths
are known. Additionally, for each character F , a rate matrix QF , and a probability distribution over
character states at the root are given. The rate matrix determines the probability of a change from
the state at the mother node to the state at the daughter node for each character and each branch,
depending on the branch length. The overall probability of the observed character states at the leaves
is the product of the transition probabilities for all characters and branches. (Since these probabilities
are small numbers, in practice one sums over logarithms of probabilities instead.)
The probability of the data given just a tree and a collection of rate matrices and root probabil-

ities, i.e. without state annotations at the internal nodes, is computed as the sum over all possible
annotations.
An annotated tree topology plus a rate matrix for each branch is a statisticalmodel (M ), the branch

lengths, rate matrix values and root character state probabilities are parameters (θ⃗), and the ob-
served characters states at the leaves are the data (D). The described method defines the quantity
P (D|M, θ⃗) — the probability of the data given the model and the parameters. Since the data, but
not the correct model and parameter values are given, P (D|M, θ⃗)— as a function ofM and θ⃗ — is
called the likelihood of (M, θ⃗). Maximum Likelihood inference attempts to find the parameterized
model with maximal likelihood, i.e., the model best explaining the data.
The class of possible parameter configurations is usually suitably constrained by limiting the pos-

sible variation of rate matrices across characters and across branches.
Finding the parameter configuration θ⃗∗ which maximizes the likelihood for known M and D can

efficiently be done using standard numerical optimization techniques. This gives amaximal likelihood
for a tree topology givenD. Finding the topology with the maximal likelihood is again an essentially
unsolvable problem. As with Maximum Parsimony, implementations of Maximum Likelihood find
a locally optimal solution by a heuristic search of the tree space.
Maximum Likelihood inference is implemented for instance in Phylip (Felsenstein 2005), Paup*

(Swofford 2002), and SplitsTree (Huson 1998). RAxML (Stamatakis 2014) is a fairly new and highly
efficient implementation. But even with RAxML, an analysis of a typical linguistic data set will take
minutes to hours on a personal computer.

⁸This method was developed incrementally; (Edwards and Cavalli-Sforza 1964) is an early reference.

25



3.4.3 Bayesian Phylogenetic Inference

Maximum Likelihood is based on probability calculations. There are, broadly speaking, two philo-
sophical interprations of the notion of probability. According to the frequentist school, the probability
of the outcome of a process is the limit of the relative frequency of that outcome if the process is
repeated over and over again. This makes sense for controlled experiments, but its application to
contingent one-time events, such as those studied by historical linguistics, is dubious. It is not possi-
ble to repeat the history of the Indo-European language family 1,000 times and to check how often
a certain pattern of cognacy relations emerges, say.
According to the subjective or Bayesian interpretation, the probability of an outcome quantifies

the degree of certainty one has about this outcome. If, for instance, an election forecast says that
candidate X has a 60% chance of winning the next election, this expresses the forecasters’ degree
of certainty on the basis of their knowledge, not some relative frequency. This interpretation seems
well-suited for historical reconstruction as well. A statement such as “With 60% probability, Italic
and Celtic form a common sub-group of Indo-European.” is coherent unter the Bayesian, but not
under the frequentist interpretation.
The calculations described above enable us to compute the probability of a character matrix given

a parameterized model. A more interesting object of scientific inquiry is the converse, i.e., the
probability of a certain model given the observed data. These two quantities are related via Bayes
Theorem:

P (M, θ⃗|D) =
P (D|M, θ⃗) · P (M, θ⃗)

P (D)
=

P (D|M, θ⃗) · P (M, θ⃗)
∑

M ′,θ⃗′ P (D|M ′, θ⃗′) · P (M ′, θ⃗)

The quantity P (M, θ⃗), the so-called prior probability of the parameterized model, expresses the
degree of our belief that this parameterized model is correct before the data are considered. Fixing
this number is tricky, and there is a vast literature on suitablemethods for obtaining prior probabilities.
Suppose this problem is solved andwe can compute the probability of a parameterizedmodel, given

the data (the so-called posterior probability). Let us say that the Maximum-Likelihood tree topology,
or the Neighbor Joining topology, has a posterior probability of 2.2%—an entirely realistic outcome.
This does not instill trust that this tree is correct.
A drawback of all methods discussed so for is that they produce point estimates, i.e., a single

tree. Even if this tree is our best guess, it might still be highly unlikely. Bayesian phylogenetic
inference overcomes this problem by generating a large number (usually at least 1,000) trees that
are distributed according to the posterior probability distribution given the data. So if a tree has a
posterior probability of 2.2%, we expect it to occur 22 times in a posterior sample of size 1,000.
Even if each individual tree in this sample has a low posterior probability, it is possible derive

conclusions with high probability. Consider again our previous example: “With 60% probability,
Italic and Celtic form a common sub-group of Indo-European.” This is supported by a Bayesian
posterior sample if 600 out of the 1,000 trees in the sample have a branch separating the Italic and
Celtic languages from the rest.
While the Bayesian approach has clear advantages, there are also drawbacks. Setting up a Bayesian

analysis requires the user to make many choices in advance pertaining to the class of models con-
sidered, the prior probability distribution (over tree topologies, rate variation across characters, rate
variation across branches etc.), and technical details about how the posterior probability is generated.
Even though there are heuristics aiding these decisions, running a Bayesian analysis is still, to some
degree, an art as much as a science. Also, it is computationally highly demanding. An analysis of
a sizeable data set usually takes at least hours and might easily take several days even on a powerful
computer server.
Let us consider the outcome of Bayesian analyses for our running examples. The phonetic data
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are not in character format, so they cannot be used directly. We extracted a character matrix from
phonetic strings in the following way. First all IPA strings were converted into strings of ASJP sound
classes. For instance, English year, [jɪə] in IPA transcription, is converted to the ASJP string yi3.
Each pair of a Swadesh concept and an ASJP sound class is treated as character. For English, the
characters :, :, and :3 have the value 1 (since the sound class occurs in the ASJP
transcription of the English word for ‘year’), while all other characters involving the concept ‘year’
have value 0 for English.
The analyses were carried out with the software MrBayes (Ronquist et al. 2012). For all three

data sets, we chose a model with gamma-distributed rates and the relaxed clock. This means, i.a.,
that it is a priori assumed that trees are rooted and that all leaves have the same distance from the
root. Consequently, branch length reflect (estimates of) historical time rather than amount of change.
Rates are allowed to vary between branches and between characters.⁹
The outcome of a Bayesian analysis is a posterior sample of at least 1,000 trees. To visualize it,

one tree is picked out from this sample which is somehow representative for the entire sample. (Note
that this need not be the tree with the highest posterior probability.) For this purpose we used the
software TreeAnnotator ¹⁰ and the criterion ofmaximum clade credibility (Drummond and Bouckaert
2015). The credibility of a clade is the relative proportion of trees in the posterior sample having
that clade. The maximum clade credibility tree is the tree with the highest aggregated credibility of
its clades.
The results are shown in Figure 15. The numbers at the branches indicate branch credibility in

percent. Unlike the bootstrap support values used above, clade credibilities are probabilities. They
give the (estimated) posterior probability that the true tree has a clade comprising the same leaves.
It is important to appreciate that the trees depicted here are each just one sample from a large

posterior distribution. Each of the three topologies shown has a posterior probability of under 1%,
so it is virtually certain that neither of them represent the true tree in its entirety. For most of the
clades in the topologies, the probability that they are genuine is very high though.
Even though these analyses produce rooted trees, the clade credibilities of the clades close to the

root is low in all three trees. This suggests the interpretation that the data used do not contain enough
information to reliably infer deep branching patterns beyond the established sub-groupings.
While the Bayesian trees are largely consistent with the outcome of the distance-based bootstrap

analysis shown above, it is obvious that Bayesian inference is able to pick up weaker signals than
Neighbor Joining + bootstrap analysis. Despite the relative data sparseness, for instance, Nepali is
correctly grouped together with Bengali and Hindi in the cognacy tree. Also, the Balto-Slavic group
(with the exception of Bulgarian) and the Romance group are reliably identified in the WALS tree.
Wherever those trees diverge from the established picture with high credibility, this likely reflects

patterns in the data rather than statistical flukes. This applies, arguably, to the classification of English
as outlier within Germanic in the cognacy tree and the WALS tree, or the Balkan grouping in the
WALS tree. In both cases, language contact is an obvious candidate for an explanation.
Bayesian inference of language phylogenies has been used extensively in recent years; landmark

publications are (Bouchard-Côté et al. 2013, Bouckaert et al. 2012, Bowern andAtkinson 2012, Dunn
et al. 2011, Gray and Jordan 2000, Gray and Atkinson 2003, Gray et al. 2009, Hruschka et al. 2015,
Pagel et al. 2007), and (Pagel et al. 2013). Most of these studies are not primarily concerned with
inferring trees per se but utilize Bayesian phylogenetic inference for other purposes, such as inferring
rates of change of linguistic variables or estimating time depths of proto-languages.
The currently most popular software tools for Bayesian phylogenetic inference are BayesPhyloge-

nies (Pagel and Meade 2004), BEAST (Drummond and Bouckaert 2015), and MrBayes (Ronquist

⁹This is a very crucial difference between modern phylogenetic inference and glottochronology, which has otherwise a
certain family resemblance to the approaches discussed here.

¹⁰http://beast.bio.ed.ac.uk/treeannotator, accessed on April 10, 2016.
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Figure 15: Bayesian trees

et al. 2012).

4 Future Challenges

The methods for sequence comparison and phylogenetic reconstruction which we discussed in the
previous parts are but a small snapshot of a vast field of topics which have been addressed in the field of
computational historical linguistics during the last decades. The problem of borrowing detection, for
example, has been intriguing scholars for some time now, and different methods have been proposed.
Phylogeny-based approaches infer borrowed words by searching for characters which are in conflict
with a given reference phylogeny (Minett and Wang 2003, Nelson-Sathi et al. 2011, List, Nelson-
Sathi, Geisler and Martin 2014, List, Nelson-Sathi, Martin and Geisler 2014, List 2015, Köllner
and Dellert 2016). Sequence-based approaches identify potential borrowings by searching for highly
similar words in either distantly related or unrelated languages (van der Ark et al. 2007, Boc et al.
2010). Phylogenetic network approaches try to infer both a phylogenetic tree and potential borrowing
events from lexical character data (Nakhleh et al. 2005). Automatic borrowing detection is still in
its infancy, and potentially a task far more difficult than the task of automatic cognate detection. It is
very interesting what future research will bring.
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Another interesting task are different approaches to the handling of semantic change. Above,
we mentioned that most approaches to cognate detection restrict the task to words with the same
meaning. Ideally, however, approaches to sequence comparison as well as approaches to phyloge-
netic reconstruction should be able to handle semantic change. Recent automatic and data-driven
approaches to semantic change began to employ the semantic map approach of Haspelmath (2003)
and apply it to synchronically attested polysemies (François 2008, Perrin 2010, Cysouw 2010b,a).
Since semantic change proceeds in stages of polysemic expansion and reduction (Wilkins 1996), syn-
chronically attested polysemies may provide immediate hints on semantic change processes. Steiner
et al. (2011) presented an automatic approach to derive semantic closeness ratings from large cross-
linguistic wordlists and even included it into their cognate detection workflow. List et al. (2013)
built on this approach to derive a polysemy network which they further partition into communities
of densely connected concepts. Their results are available in form of a web application that allows
users to investigate the data interactively (List, Mayer, Terhalle and Urban 2014, Mayer et al. 2014).
Münch and Dellert (2015) compared themanually editedDatabase of Semantic Shifts (Zalizniak et al.
2012) with automatically inferred polysemy networks and showed that the networks show a high sim-
ilarity. Dellert (2016) illustrated how methods for causal inference can be applied to cross-linguistic
polysemy data in order to infer directions of semantic change. Youn et al. (2016) used cross-linguistic
polysemy data to investigate the universality of lexical semantic structures. The quantitative investi-
gation of semantic change patterns is a very interesting and thrilling field. A future challenge will be
the unification and normalization of existing datasets and approaches, and their integration into the
algorithms for sequence comparison and phylogenetic reconstruction.

5 Conclusion

Computational historical linguistics is a young and highly active field, and new results and approaches
surface every year. As spelled out in this chapter, a substantial part of its overall research agenda
overlaps with and is inspired by the classical comparative method. Both paradigms utilize phonetic
similarity patterns between languages suspected to be related to incrementally build up classes of
cognate words, possibly by utilizing regular sound correspondence, and explain the observed patterns
of linguistic variation via tree diagrams reflecting past diversification events. Horizontal transfer
under language contact, as well as parallel innovations, are challenges for both schools since the tree
model does not directly account for it.
On the other hand, there are substantial differences between the two methods which go beyond

the contrast between manual versus computerized data exploration and model construction. One of
the most obvious ones — which is especially prone to generate misunderstandings — concerns the
adequacy criteria for family trees. According to the comparative method, a clade is justified if its
component nodes share a (possibly reconstructed) innovation which is absent outside this clade. Trees
constructed this way tend to bemultiply-branching since it is often not possible to identify/reconstruct
a shared innovation for each diversification event.
Automatically inferred phylogenetic trees, on the other hand, are almost always binary branching,

for the simple reason that the standard algorithms “don’t do” multiply branching trees. While it is
possible to identify poorly supported branches (via bootstrap confidence values, posterior probabil-
ities or similar techniques), even clades with solid statistical support do not always correspond to
shared innovations. For instance, in a scenario with overlapping isoglosses, phylogenetic algorithms
will pick the tree topology minimizing the number of shared innovations. Traditional historical lin-
guistics would either refrain from a decision or give priority to especially informative variables (such
as regular sound laws, morphological changes, or shared aberrancies).
This points to another major difference. The comparative method strongly focuses on regular

sound laws and grammatical (especially morphological) properties to infer historical relationships.
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Lexical information is considered less reliable since words are more easily borrowed than sound laws
or paradigms. Computational historical linguistics is agnostic in this respect; in principle any kind
of evidence can be used as long as cross-linguistically comparable data are available. Almost all
extant approaches focus on lexical data simply because those are easiest to get hold of. This more
promiscuous approach is justifiable though, since it is possible to quantitatively assess the phylogenetic
informativeness of different variables (see for instance Pagel et al. 2007).
To summarize, the intellectual goals of the comparative method and of modern computational

historical linguistics overlap, but they are not identical. To formulate it in a pointed way, the com-
parative methods strives to reconstruct the true history of languages in their entirety while statistical
approaches search for probable or at least usefulmodels of the observed patterns in some well-defined
partial range of data. Despite these differences, they can benefit from each other. Computational
approaches utilize the findings of the comparative method both as raw data and as goldstandard to
validate their findings. Conversely, computational approaches are well-suited to generate initial hy-
potheses especially about understudied languages, to be evaluated manually by human experts.
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