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THE RAISE OF NETWORKS AS COMPARATIVE METHODS  
IN EVOLUTIONARY BIOLOGY

Linguists, as well as biologists, study historical objects that form lineages, undergo-

ing transformations over time. Biologists, as well as linguists, therefore, are very 

dependent on comparative analyses to structure and analyze their data. Thus, it 

seems intuitive that conceptual and methodological researches in both ields could 
inform each other, and beneit to both ields. In particular, the comparative ap-

proaches elaborated in biology are experiencing massive developments that could 

be explored in linguistic studies. 

In biology, the general picture of evolution is becoming increasingly complex. 

Evolutionary innovations and changes are effected both by processes of vertical 

descent and introgressive (or combinatory) processes (recombination, lateral gene 

transfer, symbioses) (Bapteste et al. 2012; Bapteste et al. 2009; Dagan et al. 2008; 

Dagan and Martin 2009; Huang and Gogarten 2007; Kloesges et al. 2011; Marin et 
al. 2005; Wu et al. 2011). Vertical descent processes are usually modeled and stud-

ied using a common tree (e. g. a gene or a species tree) (O’Malley 2011). By con-

trast, combinatory processes reassort, regroup or merge evolutionary objects. Ex-

amples include mosaic genes, genomes and intricate symbiotic associations, and 

coalitions based on multiple lineages, persisting via the tight co-evolution of evolu-

tionary players from distinct lineages (Bapteste et al. 2012) (e. g. cells and mobile 

genetic elements such as plasmids and phages in multispecies bioilms (Ghigo 
2001; Hall-Stoodley et al. 2004; Periasamy 2009; Wintermute 2010) or in the gut 

microbiomes (Jones 2010; Lozupone et al. 2008; Qu et al. 2008; Martin et al. 

2007)). Thus original genetic associations from multiple sources, sustained by a 

diversity of evolutionary processes, can be cemented into novel evolutionary units, 

i. e. when the transfer of domains produces new genes, or the transfer of genes pro-

duces new gene clusters, pathways and mosaic genomes. Likewise genetic associa-

tions between distantly related entities can evolve into novel symbiotic organisms 

and microbial coalitions (Dagan et al. 2008; Martin et al. 2007; Moustafa et al. 

2009). 

Consequently, the usual framework of a single tree fails to represent the evolu-

tion of many biological entities, at different biological scales, in particular when 

these entities are mergers from multiple lineages. Problems also arise when the in-
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vestigated entities are too divergent from reference entities already put in a refer-

ence tree to be simultaneously analyzed on the same tree. Highly divergent entities 

will typically not be readily comparable with reference entities in a single analysis, 

as the homology between divergent entities becomes too distant to be effectively 

detected. This problem does not constitute a major limit for network analyses, 

which can handle higher levels of divergence (Alvarez-Ponce et al. 2013; Beaure-

gard-Racin et al. 2011). Thus, in biology networks are increasingly used as alterna-

tive models to describe more of the complexity of biological evolution (Bapteste et 

al. 2012; Dagan et al. 2008; Dagan 2009; Alvarez-Ponce et al. 2013; Beauregard-

Racine et al. 2011; Fondi and Fani 2010; Halary et al. 2010; Lima-Mendez et al. 

2008); Skippington and Ragan 2011. These methods are an invaluable complement 

to the construction of common trees of single lineages of objects from a given level 

of organisation (e. g. gene trees focusing on genes, organismal trees focusing on 

organisms, species trees focusing on species, etc.). Moreover, their potential to pro-

vide a novel analytical framework for exploratory evolutionary studies is also in-

creasingly acknowledged. 

Indeed, networks are more lexible graphs than trees. They are less constrained 
in their representation of the data and the relationships between objects, and can 

support different levels of abstraction. Typically, a network G, noted G = (V, E), 

comprises a set V of vertices or nodes associated with a set E of edges. The nature 

of the nodes (e. g. a domain, a gene, a gene cluster, a genome, an environment) as 

well as their rules of connection can be used as parameters that vary in exploratory 

analyses (Burian 2011). Thus, using networks of genes, or of genomes, or of line-

ages, or of environments, biological diversity can be observed at many levels, e. g. 

within one (or many) gene families, genomes, lineages, communities, or environ-

ments (Zhaxybayeva and Doolittle 2011), by simply varying the nature of the inves-

tigated nodes. Moreover, each level of biological diversity can be structured in 

different informative ways by changing the types of edges represented in these 

graphs. For instance, for nodes corresponding to the same set of protein sequences, 
a graph could either only show connections retracing functional interactions be-

tween these proteins (Martha et al. 2011; Vinayagam et al. 2011; Wang et al. 2011), 

or connections relecting only genealogical relationships between these proteins 
(Beauregard-Racine et al. 2011; Alvarez-Ponce and McInernex 2011), etc. When 

these variations in the type of edges represented in these networks induce changes 

in the graph topology between the nodes, networks comparisons can identify ro-

bust/transient patterns of connections, appearing over a large/limited range of con-

ditions / biological levels, i. e. transient functional interactions between unrelated 

proteins. 

Interestingly, these remarkable patterns need not necessarily be a priori ex-

pected. Network-based studies of genetic diversity typically foster the discovery of 

many unrecognized patterns, and thus contribute to actively generate novel hypoth-

eses about the evolution of genetic diversity. For example, in a gene network (Beau-

regard-Racine et al. 2011; Bittner et al. 2010), nodes are gene sequences, connected 
by weighted edges when they share a relationship of homology/identity, as assessed 

by a BLAST score. Each gene family is easily characterized as it falls in a separated 
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connected component. When environmental sequences are included in such analy-

ses along with sequences from cultured organisms, novel environmental gene fam-

ilies can be discovered. Moreover, such gene networks can be used to detect evolu-

tionary units that a tree of sequences alone cannot detect. For instance, the study of 
104–106 sequences allows to detect groups of genes families with complex evolu-

tionary patterns (expansions, high evolutionary rates, combinations (Beauregard-

Racine et al. 2011), etc.), fused genes (Gallagher and Eliassi-Rad 2008; Jachiet et 

al. 2013), and very distantly related gene forms (Alvarez-Ponce et al. 2013), branch-

ing off rather than within the sequences from known gene families. Hence, an ex-

ploratory approach of genetic diversity can unravel unsuspected highly divergent 

gene forms, and questions what their biological function might be. 
The exploratory use of network can be formalized in even more general terms. 

While most evolutionary studies are mainly concerned by the justiication of theo-

ries about how entities diverge or by the test of genealogical hypotheses seeking to 

establish sister-group relationships, exploratory sciences try to develop new con-

cepts to ‘ix any evolutionary phenomenon’ calling for explanation (Burian 2011; 
Franklin-Hall 2005). It uses networks to establish and classify relevant patterns that 

had not yet been well characterized, such as the patterns that a tree-based approach 

would fail to represent. Networks can not only quickly sort massive amount of data 
with limited a priori on the connections between the objects analyzed in these data, 

but also rapidly expose their potential underlying (intriguing) patterns/structures. 

Finally, networks offer a precious mathematical framework for comparative 

and exploratory analyses, because the topological properties of their nodes and 

edges (Koschützki 2008) can be computed and compared. Topological indices, such 
as the conductance (Leskovec et al. 2008) of a group of nodes can be estimated. For 

a given group of nodes (e. g. nodes corresponding to words from a given cognate, 

or to genes from a given gene family), the conductance C is computed as: C = N
ext

 

/ (N
ext

 + 2*N
int

), where N
int

 is the number of internal edges (e. g. linking members 

of that cognate or gene family) and N
ext

 is the number of external edges (e. g. link-

ing a member from that cognate/gene family and a member from another cognate/

gene family). Clustered and/or isolated groups (e. g. of words from the same cog-

nate or of genes from the same gene family) have a conductance close to 0, while 

spread out or fragmented groups have a conductance close to 1. Thus, the conduct-

ance measures whether nodes with a given label cluster in the networks (i.e. whether 

words from the same cognate, grammatical class or dialect are more similar to one 

another than to any other words; or whether genes with the same function, or from 

the same genus, or from the same environment, are more similar to one another than 

to any other gene). 

Importantly, the increasingly recognized diversity of biological evolutionary 

processes and patterns observed in biological studies may also ind some echo in 
the ield of linguistics. This latter discipline also inquires history and evolution of 
numerous evolving entities, such as word families and languages, which may very 

well be effected by vertical and combinatory processes (Nelson-Sathi et al. 2011) 

(see Table 1, for a possible analogy between the evolution of biological and linguis-

tics objects). Therefore, we wanted to test here whether the study of some linguistic 
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objects using networks could foster novel hypotheses about their evolution, and 

offer a test-case for the relevance of some of the analogies between biological and 

linguistic objects. More precisely, we used a dataset of 48 semantic glosses trans-

lated into 40 Chinese dialects to reconstruct a word network based on phonetic 

similarity. We classiied these words by their meaning, dialect of origin and gram-

matical categories, and estimated the conductance (e. g. the phonetic consistency) 

of each meaning, dialect, and grammatical category. We observed that different 

selective (sociological and linguistic) pressures are acting on how a word sounds, 

introducing phonetic variability and structure in Chinese languages according to 

different rules, inluenced by the grammatical category to which the words belong. 
Yet, cognate sets and gene families present rather different levels of diversity (pho-

netic and genetic, respectively), encouraging the innovative development of spe-

ciic network methods in linguistics rather than the simple import of comparative 
methods of evolutionary biology that are currently better suited for biological ob-

jects.

Table 1. Some possible correspondence for an analogy between evolutionary biology and linguistics
Evolutionary Biology Evolutionary Linguistics

Gene (particular function) Word (meaning)

Gene family Cognate set

Gene functional ontology Grammatical category

Genome Dialect, Language

Lateral Gene Transfer Lexical borrowing

Genetic diversity Phonetic diversity

Distant homology Hidden cognacy

Selective pressures Sociological, linguistic constraints

THEORETICAL POWER OF EXPLORATORY NETWORKS  
IN LINGUISTICS

Network-based analyses allow relaxing some a priori constraints generally im-

posed by tree-based analyses. Although disquieting in the irst place for practition-

ers more trained to work within a tree-based framework, this reduction of con-

straints in data display offers a novel way to capture more of the evolutionary pro-

cesses and patterns in addition to the process and pattern of ‘vertical descent with 

modiication’. This general observation, we believe, probably holds true for both 
evolutionary biology and linguistics, assuming that in both ields several processes 
cannot be properly represented and modeled with a tree-based approach, which in-

exorably constrains the analyses to be only expressed in terms of divergence and 

dichotomies, as well as the type of data suited for an evolutionary analysis. In mo-

lecular phylogenetics for instance, the suitable material are homologous sequences 
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that align well with one another, since they belong to a single sequence family de-

rived from an ancestral gene copy. This practice considerably restricts the amount 

of molecular data amenable for analysis, and thus the scope of the analysis (Bapt-

este et al. 2012; Bapteste et al. 2008; Dagan and Martin 2006; Leigh et al. 2011). 

Sequences undergoing more complex evolutionary processes are not included in 
the analyses, because they would blur the reconstruction of the gene (or species) 

genealogy that tree-based analysis generally aims for. Gene networks overcome 

this issue of massive a priori data exclusion, by allowing the display of more pro-

cesses and relations between gene forms (although these are not only the usual rela-

tions of homology) than is permitted by a tree. Similarly, we argue that word net-

works may extend the scope of linguistic analysis beyond inferences focused on 

predeined cognate sets by recovering more distant cases of cognacy or by introduc-

ing novel measures of similarity (here phonetic distances) between words.

Various types of distances could be used to reconstruct a word network. In the 

present analysis, we focus on phonetic word networks, as a mean to display (and 

then later to analyze) the phonetic diversity of words within several dialects (Figure 

1). 

Figure 1: Virtual weighted cognate networks. 

A. A component corresponding to a set of words that may, or may not, belong to an accepted cognate 

family. Nodes are words, color-coded based on their dialect of use. Edges are weighted according to 

any distance metric, i. e. a phonetic distance between pairs of words. B-D. Virtual component to-

pologies that would support distinct interpretations on words evolution. B. A phonetically conserved 

word family, the typical pattern in a word network for a bona ide cognate set. C: The bridging node 
is an emerging word resulting from borrowing and fusion events of words from distinct dialects. D: 

A family of words with two strongly connected communities and peripheral nodes (light green, grey, 

and black), indicating distantly related versions of these words in several dialects, suggesting differ-

ent evolutionary rates (of the sounds) of these words in the dialects, while showing some ‘regional’ 
conservation in the brown dialects.

Such word networks are disconnected, because each set of words using a common 

pool of phonemes will create its own connected component in the graph. Indeed, 

when two words are phonetically different (e. g. presenting less than a minimal 

phonetic similarity with one another), no edge is drawn between them, and they fall 

into distinct subgraphs within the word network. Otherwise, when two words dis-

play some phonetic similarity (e. g. when their phonetic distance is lower than a 

given threshold), these words are connected by weighted edges, with an edge 

weight that is inversely proportional to the phonetic distance, so that words closer 

in phonetic distance have edges with higher weights on the graph. 

A notable consequence of the great inclusiveness of such phonetic word net-
works is that not all their components have to be cliques, i. e. maximally connected 
components in which each and every node directly connects to each and every other 
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node in the “word family”. In biological networks (gene networks), the clique pat-
tern is typical for ubiquitous and conserved gene families, in which all sequences 
are highly similar because inherited from a last common ancestor and affected by a 

relatively limited amount of mutations so that their homology can still be success-

fully assessed. However, it is an empirical question whether, in word networks, the 
analogs of gene families, the cognates, will also produce cliques, with related words 
sounding suficiently alike to be all directly connected together to the exclusion of 
other unrelated words. More or less structured connections can emerge in these 

graphs showing phonetic distances between words. In particular, cognates may not 

produce cliques, and belong to components that are either the result of more com-

plex evolutionary processes than vertical descent from an ancestral word alone 

(e. g. the evolution of these words and word families may involve combinatory 

processes); or they could belong to components joining groups of words affected by 

phonetic convergences (a phenomenon that is expected because a typical word is 

short and the phoneme diversity is limited). These latter components may mix to-

gether words belonging to different cognate sets, however connected because they 

exploit overlapping pools of “phonemes”. Finally, members of the same cognate set 

may also be highly disconnected in the network, if those cognates are word families 

in which sounds evolve very fast, to a point that it becomes impossible to detect the 

common historical origin of these words based on phonetic distances alone. A fur-

ther investigation of the classes of words (organized by dialects, grammar and 

meanings) may unravel some rules of “phoneme” associations and the constraints 

that may affect how words sound. Here, we investigated phonetic diversity from 

multiple perspectives to test whether and how the dialect of origin of a word, or its 

grammatical function, or its meaning affected its phonetic consistency. 

APPLICATION TO THE NETWORK OF CHINESE COGNATES

We used a subpart of Hóu’s collection of Chinese dialect data (Hóu 2004), consist-
ing of 48 semantic glosses translated into 40 Chinese dialects. The whole data com-

prised 2,999 different words. Following cognate judgments provided in the original 

data, these words were grouped into 337 different cognate sets. We further calcu-

lated phonetic distances between all words using the SCA method (List 2012) to 

derive alignment scores and the formula by Downey et al. (Downey et al. 2008) to 

convert similarity into distance scores. Mean distance between any two words was 

estimated to be 1.17, but only 0.35 between two cognates (Figure 2). 
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Figure 2: Phonetic distance between pairs of words estimated by SCA. 

Left panel: Phonetic distance between all pairs of words; Right panel: Phonetic distance between 

pairs of cognates. This graph shows that words belonging to the same cognate set sound much more 

alike than random pairs of words, however they can still show important phonetic variations.

This simple observation indicated that words belonging to the same cognate set 

sound much more alike than random pairs of words, a property that is also observed 

in evolutionary biology. Extant sequences diverging from the same ancestral se-

quence (homologous sequences) are expected to be much more similar to each 
other than to any unrelated sequence and given the extremely low probability that 
two random sequences will show some similarity by chance alone, molecular evo-

lutionists usually consider that analogy implies homology. We thus investigated 

whether similarity networks applied to linguistic data would perform in a similar 

way as they do in molecular evolution. Just as a threshold is needed to determine 

whether two sequences should be considered homologous, a maximum phonetic 
distance has to be used to determine if two words show signiicant phonetic proxim-

ity. Since the average distance between words from the same cognate was 0.35, we 

used that threshold to build our network and linked pair of words that showed a 

phonetic distance lower or equal to 0.35. This protocol allowed us to ilter the 4.5 
million potential edges (for 2,999 words) of the most inclusive word network to 

reduce it to its most pronounced relationships, summarized by about 60,000 edges 

encompassing 97 % of the word dataset. This phonetic diversity was then reined by 
distinguishing two kinds of edges in the reduced network: on the one hand, cognate 

edges, connecting two members of the same cognate set, and on the other hand, 

similarity edges connecting members from different cognate sets. First, for repre-

sentation purposes, we used only cognate edges (Figure 3). The resulting sub-net-

work (i) very neatly split some cognates into different graph components (indicat-

ing that groups of words from the same cognate set can sound very differently) and 

(ii) showed components that were not cliques, demonstrating the importance of 
phonetic variation within cognate sets.
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Figure 3: Network of close phonetic proximity between  
words belonging to the same cognate set. 

Nodes correspond to words, colored by meanings, connected by edges indicating a close phonetic 

proximity (distance < 0.35) between pairs of words from the same cognate set. Some meanings are 

indicated along this subnetwork. Some connected components are not cliques, indicating strong di-
vergence.

Figure 4: Network of close phonetic proximity with both cognate and similarity edges.

Nodes correspond to words, colored by meanings, connected by cognate edges (in black) and simi-

larity edges (in grey) indicating a close phonetic proximity (distance < 0.35) between pairs of 

words. Colors are extremely scrambled, showing that the phonetic consistency (clustering and iso-

lation) of most Chinese meanings is low.
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However, one should not be mistaken by the exclusive focus on cognate edges, 

because when all phonetic comparisons (hence when both cognate and similarity 

edges) are considered, it is equally obvious that words from different cognate sets 
also sound very close (Figure 4). In other words, there are strong phonetic conver-

gences between historically unrelated words. This observation brings forward a 

fundamental difference between cognate sets and their presumed analogs in the bio-

logical sciences: gene families. While gene families can be identiied based on their 
genetic distances, cognate sets cannot be successfully identiied based on their pho-

netic distances. In linguistics, this is known as the problem of phenotypic as op-

posed to genotypic similarity (Lass 1997). Phenotypic similarity refers to word 

similarities based on language-independent surface criteria by which the similarity 

of phonetic segments is determined. Genotypic similarity refers to similarity that is 

language-speciic.That means that it can be only deined for distinct pairs of lan-

guages that are known to be genetically related. For a given language pair, geno-

typic similarity is determined in form of sound correspondences, that is sounds 

(phonemes) that are known to be homologous. As an example for such correspond-

ences, compare the cognate words English token [təʊkən] and German Zeichen 

[ʦaɪçən] ‘sign’. Although these words sound very different, it is easy to show that 
the sounds regularly correspond to each other, as can be seen from English weak 

[wiːk] vs. German weich [vaɪç] ‘soft’ for the correspondence of [k] with [ç], and 
English tongue [tʌŋ] vs. German Zunge [ʦʊŋə] ‘tongue’ for the correspondence of 
[t] with [ʦ]. Genotypic similarity is quite similar to the relation between a source 
text and its encryption, where all characters may refer regarding their substance, 

although they are related by an underlying distinct mapping.

Thus, while the alignment problem in biology can be stated under the assump-

tion that two sequences are both drawn from the same alphabet (e. g. proteins), the 
alignment problem in linguistics is essentially the problem of aligning two se-

quences drawn from two different alphabets. Although from a general perspective 

cognate sets and gene families are the same kind of classes of objects, practically 

they cannot be detected, hence studied alike. Indeed, members of both cognate sets 

and gene families share the extrinsic, relational, property of originating from the 

same common ancestor; yet this historical essence of cognates and of gene families 

does not translate into the deinition of sets of objects with intrinsic exclusive prop-

erties. There is no obligate (nor strong) correlation between ‘having the same ori-

gin’ and ‘sounding alike’ for words, while there is a stronger correlation between 
‘having the same origin’ and ‘having closer genetic sequences than anyone else’ for 
genes. This difference implies that while the classiication of genes into gene fami-
lies allows for some generalizations about the members of the gene family, the 

classiication of words into cognate sets allows for less generalization regarding 
their phonetic similarity. This difference may not come as a surprise, since the lim-

ited amount of phonemes and the limited size of words (as opposed to the high 

combinatorials of DNA bases in relatively longer sequences) makes such conver-
gences expected. However, this high level of phonetic convergence means that 

word network based on phonetic distances are unlikely to be as discriminating as 

gene networks based on genetic distances. While the latter can be used to infer 
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classes of undetected (hidden) homology, it seems more problematic to use the 

former to infer undetected (hidden) cognacy, without the development of speciic, 
genotypic, distances, adapted to the objects of linguistics. Moreover, the fact that 

gene families can be deined both based on correlated extrinsic and intrinsic proper-
ties, while cognate sets seem to be mostly characterized by extrinsic properties 

raises questions on whether these objects can be used alike for explanations, de-

scriptions and inductive inferences in the ields of biology and linguistics, and if 
not, whether the analogy between cognate and gene families should not be also re-

ined. 

Figure 5: Conductance of the meanings, dialects and grammatical types  
in the Chinese word network. 

Conductance for each item (x-axis) is indicated on the y-axis, and computed as described in the text. 

Signiicance was assessed by shufling the labels of the original network, then computing the various 
conductances (Top: dialect, Middle: meaning, Bottom: grammar) on this randomized network. The 

procedure was repeated 1,000 times to obtain a normal distribution of conductances for random 

classes of the same size as the tested classes. Except for the 11 leftmost dialects (Wuhan to Haerbin), 

all observed conductances were less than 2 sigma below the mean of their corresponding normal 

distribution, meaning that the estimated conductance was not a mere effect of the sample size.

Importantly however, the fact that the Chinese word network based on phonetic 

distances is not strongly structured by cognate sets does not mean that this network 

does not show another type of informative structure. We classiied the words into 
three functional categories to test whether, in spite of this high amount of phonetic 

convergence, phonetic properties of the words were not random, suggesting some 

rules and selective pressures on phoneme combinations. To this end, each word was 

labeled based on its meaning, dialect of origin, and grammatical type (Adjective, 
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Adverb, Noun, Preposition, Verb), and the conductance of each of these labels in 

the network was assessed (Figure 5). All dialects presented a very high conductance 

(close to 1) indicating that they cannot easily be distinguished based on the phonetic 

similarity between their words: words from different dialects can sound very close, 

or to put it differently, no dialect shows strong phonetic consistency. This is not 

surprising, since high phonetic similarity between the words of a single language 

would make it dificult for the speakers to communicate. Meanings also had high 
conductances, however lower than those of dialects, and some meanings (“right”, 

“sun”, “nose”, “moon”, “left”, “mother” and “rain”) had even relatively low con-

ductances, testifying that some combinations of phonemes were preferentially as-

sociated with these meanings. Given that words denoting these meanings are usu-

ally highly preserved, often going back to the same ancestor form in all Chinese 

dialects, this result is also not unexpected. Strikingly, grammatical types present the 

lowest conductances of all the tested classes and structure the similarity network 

more strongly than all the other types we checked (Figure 6). A mechanical expla-

nation for this might lie in the distance measure that we used. Although normalized 

for word length, the distance measure is still rather sensitive to the comparison of 

words that have an equal length, yielding lower distance scores for words with a 
similar length. Since average word length tends to be very similar for parts of 

speech in Chinese (prepositions usually consist only of one syllable, nouns usually 

have two syllables), this may also be a reason for the low conductance of words 

corresponding to the same part of speech.

Figure 6: Network of close phonetic proximity with both cognate and  
similarity edges colored by grammatical types.

Nodes correspond to words, colored by grammatical types, connected by cognate edges (in black) 

and similarity edges (in grey) indicating a close phonetic proximity (distance < 0.35) between pairs 

of words. This igure can be contrasted to Figure 4 to verify that meanings are less phonetically 
structured than grammatical types.
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CONCLUSION & PERSPECTIVES

In both the ields of evolutionary biology and linguistics, graphs appear as excellent 
tools for the exploratory analysis of evolving objects, be they words or genes. How-

ever, because the evolution of words is affected by more convergences than the 

evolution of genes, speciic adjustments seem still to be required to integrate net-
works in the toolkit of linguistic studies. In particular, unsupervised automatic cog-

nate detection might prove much harder than gene family detection. The investiga-

tion of the phonetic diversity of cognate words from Chinese dialects with rela-

tively simple networks however was already powerful enough to identify different 

phonetic structures at different levels of linguistic organization. Dialects, meanings 

and grammatical categories seem subjected to distinct intensities of selective pres-

sures, affecting the diversity of phonemes used in their making, in ways that now 

deserved to be explained. 

MATERIAL AND METHODS

Dataset

The data that we used for our analysis is taken from the Hànyǔ Fāngyán Yīnkù (Hóu 
2004), a CD-ROM that offers many different resources on Chinese dialects, includ-

ing phonological descriptions, phonetic transcriptions, and sound recordings for 40 

different dialect varieties. From the CD-ROM, we extracted a part of the lexical 

subset, consisting of 48 glosses (“concepts”) translated into the 40 varieties. These 

48 glosses belong to the basic vocabulary in the strict sense of Swadesh (Swadesh 

1952; Swadesh 1955). Chinese dialects often have a lot of synonyms for the very 

same concept; therefore the resulting dataset is made of 2,999 words in total. The 

source material was given in a format not tractable for computational analyses. 

Therefore, the extraction procedure was carried out semi-automatically, applying 

additional manual cleaning. All entries were double-checked by comparing the 

phonetic transcription for each word with its corresponding sound recording. The 

data was further enriched by looking up the grammatical categories of the glosses, 

translating the glosses into English, adapting the phonetic transcriptions to plain 

IPA, and applying a rough procedure for automatic cognate detection that is de-

scribed in the following section.

Cognate Judgments

In Chinese dialectology it is common to give not only the pronunciation of a given 

dialect word, but also an assessment regarding its homology. Homology assess-

ments are usually coded by giving the Chinese characters corresponding to a given 

word. Since for most Chinese characters the Middle Chinese readings (spoken 

around the 6th century) can be reconstructed from old rhyme books, a character is 
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somewhat similar to a proto-form. Thus, Táoyuán [ŋit²²tʰeu¹¹] and Hǎikǒu [zit³hau³¹] 
“sun” are both written as 日头, and the proto-form would have been pronounced as 

*ȵit⁴duw¹ in Middle Chinese times (if the compound was already present during 

that time). Note that the character assignments in Chinese dialectology are ho-

mologs in the strict sense, since no distinction between borrowing and vertical in-

heritance is drawn. Using this procedure, the 2,999 words could be grouped into 
337 cognate sets.

Phonetic distances

Phonetic distances between all words were calculated using the SCA method (List 

2012) to derive alignment scores, and the formula by Downey et al. (Downey et al. 

2008) to convert similarity into distance scores. The resulting distance measure is 

“phenotypic” in the sense of Lass (Lass 1997) in so far as it is language-independ-

ent, neglecting the presence or absence of previously established sound-corre-

spondence patterns. However, it is based on an enhanced function for the scoring of 

phonetic segments, and previous studies (List 2012) could show that it outperforms 

alternative distances measures, such as the normalized Levenshtein distance (Lev-

enshtein et al. 2010), or the measure underlying the cognate detection method by 

Turchin et al. (Turchin et al. 2010). Therefore, this distance measure seems to be a 

more reliable basis for network applications than alternative ones.

Network visualization and analyses

The network layouts were produced by Cytoscape software (Smoot et al. 2011), 

using force directed layouts. Conductances were computed as: C = N
ext

 / (N
ext

 + 

2*N
int

), where N
int

 is the number of internal edges (e. g. between members of that 

cognate or gene family) and N
ext

 is the number of external edges (e. g. between a 

member from that cognate/gene family and a member from another cognate/gene 

family). Signiicance of these conductances was assessed by shufling the labels of 
the original network, then computing the various conductances (dialect, meaning, 

grammar) on this randomized network. The procedure was repeated 1,000 times to 

obtain a normal distribution of conductances for random classes of the same size 

than the tested classes. Unless speciied otherwise, most observed conductances 
were more than 2 sigma lower than the mean of their corresponding normal distri-

bution, meaning that the conductance values are not a mere effect of the sample 

size.
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